Inertial coefficient rings and the idempotent lifting property
HTML articles powered by AMS MathViewer
- by Ellen E. Kirkman
- Proc. Amer. Math. Soc. 61 (1976), 217-222
- DOI: https://doi.org/10.1090/S0002-9939-1976-0422333-1
- PDF | Request permission
Abstract:
A commutative ring $R$ with identity is called an inertial coefficient ring if every finitely generated $R$-algebra $A$ with $A/N$ separable over $R$ contains a separable $R$-subalgebra $S$ of $A$ such that $A = S + N$, where $N$ is the Jacobson radical of $A$. We say $A$ has the idempotent lifting property if every idempotent in $A/N$ is the image of an idempotent in $A$. Our main theorem is that any finitely generated algebra over an inertial coefficient ring has the idempotent lifting property.References
- Gorô Azumaya, On maximally central algebras, Nagoya Math. J. 2 (1951), 119–150. MR 40287
- W. C. Brown and E. C. Ingraham, A characterization of semilocal inertial coefficient rings, Proc. Amer. Math. Soc. 26 (1970), 10–14. MR 260730, DOI 10.1090/S0002-9939-1970-0260730-2
- Frank DeMeyer and Edward Ingraham, Separable algebras over commutative rings, Lecture Notes in Mathematics, Vol. 181, Springer-Verlag, Berlin-New York, 1971. MR 0280479 N. S. Ford, Ph. D. Dissertation, Michigan State Univ., July 1972.
- Silvio Greco, Algebra over nonlocal Hensel rings, J. Algebra 8 (1968), 45–59. MR 218348, DOI 10.1016/0021-8693(68)90034-3
- Silvio Greco, Algebras over nonlocal Hensel rings. II, J. Algebra 13 (1969), 48–56. MR 244314, DOI 10.1016/0021-8693(69)90005-2
- Edward C. Ingraham, Inertial subalgebras of algebras over commutative rings, Trans. Amer. Math. Soc. 124 (1966), 77–93. MR 200310, DOI 10.1090/S0002-9947-1966-0200310-1
- E. C. Ingraham, On the existence and conjugacy of inertial subalgebras, J. Algebra 31 (1974), 547–556. MR 349752, DOI 10.1016/0021-8693(74)90133-1
- Nathan Jacobson, Structure of rings, American Mathematical Society Colloquium Publications, Vol. 37, American Mathematical Society, 190 Hope Street, Providence, R.I., 1956. MR 0081264
- Jean-Pierre Lafon, Anneaux henséliens, Bull. Soc. Math. France 91 (1963), 77–107 (French). MR 150171
- Andy R. Magid, The separable Galois theory of commutative rings, Pure and Applied Mathematics, No. 27, Marcel Dekker, Inc., New York, 1974. MR 0352075
- R. S. Pierce, Modules over commutative regular rings, Memoirs of the American Mathematical Society, No. 70, American Mathematical Society, Providence, R.I., 1967. MR 0217056
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 61 (1976), 217-222
- MSC: Primary 16A32
- DOI: https://doi.org/10.1090/S0002-9939-1976-0422333-1
- MathSciNet review: 0422333