$L_{p}(\mu ,X)$ $(1<p<\infty )$ has the Radon-Nikodým property if $X$ does by martingales
HTML articles powered by AMS MathViewer
- by Barry Turett and J. J. Uhl
- Proc. Amer. Math. Soc. 61 (1976), 347-350
- DOI: https://doi.org/10.1090/S0002-9939-1976-0423069-3
- PDF | Request permission
Abstract:
Using the fact that ${L_p}[0,\;1]\;(1 < p < \infty )$ has an unconditional basis, Sundaresan has shown that ${L_p}(\mu ,\;X)$ has the Radon-Nikodým property if $1 < p < \infty$ and $X$ has the Radon-Nikodým property. In this note, Sundaresan’s theorem is proved by direct martingale methods. Then it is shown how to adapt this argument to the context of Orlicz spaces in which Sundaresan’s argument is not applicable.References
- D. L. Burkholder, Martingale transforms, Ann. Math. Statist. 37 (1966), 1494–1504. MR 208647, DOI 10.1214/aoms/1177699141
- S. D. Chatterji, Martingale convergence and the Radon-Nikodym theorem in Banach spaces, Math. Scand. 22 (1968), 21–41. MR 246341, DOI 10.7146/math.scand.a-10868
- L. E. Dor and E. Odell, Monotone bases in $L_{p}$, Pacific J. Math. 60 (1975), no. 2, 51–61. MR 399832, DOI 10.2140/pjm.1975.60.51
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964, DOI 10.1090/surv/015 N. Dunford and J. T. Schwartz, Linear operators. Part I, Interscience, New York, 1958. MR 22 #8302.
- V. F. Gapoškin, The existence of unconditional bases in Orlicz spaces, Funkcional. Anal. i Priložen. 1 (1967), no. 4, 26–32 (Russian). MR 0222628
- Kondagunta Sundaresan, The Radon-Nikodým theorem for Lebesgue-Bochner function spaces, J. Functional Analysis 24 (1977), no. 3, 276–279. MR 0450956, DOI 10.1016/0022-1236(77)90058-1 Barry Turett, Fenchel-Orlicz spaces, Thesis, Univ. of Illinois at Urbana-Champaign, 1976.
- J. J. Uhl Jr., Applications of Radon-Nikodým theorems to martingale convergence, Trans. Amer. Math. Soc. 145 (1969), 271–285. MR 251756, DOI 10.1090/S0002-9947-1969-0251756-X
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 61 (1976), 347-350
- MSC: Primary 46E40; Secondary 28A45
- DOI: https://doi.org/10.1090/S0002-9939-1976-0423069-3
- MathSciNet review: 0423069