Almost-complex substructures on the sphere
HTML articles powered by AMS MathViewer
- by I. Dibag
- Proc. Amer. Math. Soc. 61 (1976), 361-366
- DOI: https://doi.org/10.1090/S0002-9939-1976-0423248-5
- PDF | Request permission
Abstract:
The paper solves completely the existence problem of almost-complex substructures on spheres.References
- J. F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 (1962), 603–632. MR 139178, DOI 10.2307/1970213
- M. F. Atiyah and J. A. Todd, On complex Stiefel manifolds, Proc. Cambridge Philos. Soc. 56 (1960), 342–353. MR 132552, DOI 10.1017/s0305004100034642
- Ibrahim Dibag, Decomposition in the large of two-forms of constant rank, Ann. Inst. Fourier (Grenoble) 24 (1974), no. 3, ix, 317–335 (English, with French summary). MR 391115
- François Sigrist, Sur les nombres de James des variétés de Stiefel complexes, Illinois J. Math. 13 (1969), 198–201 (French). MR 248828
- Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. MR 0039258
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 61 (1976), 361-366
- MSC: Primary 53C15; Secondary 57D15
- DOI: https://doi.org/10.1090/S0002-9939-1976-0423248-5
- MathSciNet review: 0423248