## A limit theorem for measurable random processes and its applications

HTML articles powered by AMS MathViewer

- by L. Š. Grinblat PDF
- Proc. Amer. Math. Soc.
**61**(1976), 371-376 Request permission

## Abstract:

Let the measurable random processes ${\xi _1}(t), \ldots ,{\xi _n}(t), \ldots$ and $\xi (t)$ be defined on $[0,\;1]$. There exists $C$ such that for all $n$ and $t$ we have $E|{\xi _n}(t){|^p} \leqslant C,\;p \geqslant 1$. The following assertion is valid: if for any finite set of points ${t_1}, \ldots ,{t_k} \subset [0,\;1]$ the joint distribution of ${\xi _n}({t_1}), \ldots ,{\xi _n}({t_k})$ converges to the joint distribution of $\xi ({t_1}), \ldots ,\xi ({t_k})$, and if $E|{\xi _n}(t){|^p} \to E|\xi (t){|^p}$ for all $t \in [0,\;1]$, then for any continuous functional $f$ on ${L_p}[0,\;1]$ the distribution of $f({\xi _n}(t))$ converges to the distribution of $f(\xi (t))$. This statement immediately implies the convergence of distributions in some limit theorems for the sums of independent random variables (for example, in one of the theorems of P. Erdös and M. Kac) and in some statistical criteria (for example, in the ${\omega ^2}$-criterion of Cramér and von Mises).## References

- R. H. Cameron and W. T. Martin,
*The Wiener measure of Hilbert neighborhoods in the space of real continuous functions*, J. Math. Phys. Mass. Inst. Tech.**23**(1944), 195–209. MR**11174**, DOI 10.1002/sapm1944231195 - P. Erdös and M. Kac,
*On certain limit theorems of the theory of probability*, Bull. Amer. Math. Soc.**52**(1946), 292–302. MR**15705**, DOI 10.1090/S0002-9904-1946-08560-2 - D. A. Darling,
*The Kolmogorov-Smirnov, Cramér-von Mises tests*, Ann. Math. Statist.**28**(1957), 823–838. MR**93870**, DOI 10.1214/aoms/1177706788 - I. I. Gikhman and A. V. Skorokhod,
*Introduction to the theory of random processes*, W. B. Saunders Co., Philadelphia, Pa.-London-Toronto, Ont., 1969. Translated from the Russian by Scripta Technica, Inc. MR**0247660** - Kôsaku Yosida,
*Functional analysis*, Die Grundlehren der mathematischen Wissenschaften, Band 123, Academic Press, Inc., New York; Springer-Verlag, Berlin, 1965. MR**0180824**

## Additional Information

- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**61**(1976), 371-376 - MSC: Primary 60B10
- DOI: https://doi.org/10.1090/S0002-9939-1976-0423450-2
- MathSciNet review: 0423450