Univalent functions and the Riemann mapping theorem
HTML articles powered by AMS MathViewer
- by P. R. Garabedian
- Proc. Amer. Math. Soc. 61 (1976), 242-244
- DOI: https://doi.org/10.1090/S0002-9939-1976-0425094-5
- PDF | Request permission
Abstract:
A proof of the Riemann mapping theorem is given that depends on variational formulas for univalent functions. The method of proof can be used to simplify the derivation of the ordinary differential equation for extremal univalent functions given by Schiffer in 1938.References
- R. de Possel, Zum Parallelschlitztheorem unendlich-vielfach zusammenhaengender Gebiete, Nachr. Ges. Wiss. Goettingen Math. Phys. Kl. (1) 23 (1931), 199-202.
M. Schiffer, A method of variation within the family of simple functions, Proc. London Math. Soc. 44 (1938), 432-449.
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 61 (1976), 242-244
- MSC: Primary 30A30
- DOI: https://doi.org/10.1090/S0002-9939-1976-0425094-5
- MathSciNet review: 0425094