Some stability theorems for nonharmonic Fourier series
HTML articles powered by AMS MathViewer
- by Robert M. Young
- Proc. Amer. Math. Soc. 61 (1976), 315-319
- DOI: https://doi.org/10.1090/S0002-9939-1976-0425499-2
- PDF | Request permission
Abstract:
The theory of nonharmonic Fourier series in ${L^2}( - \pi ,\pi )$ is concerned with the completeness and expansion properties of sets of complex exponentials $\{ {e^{i{\lambda _n}t}}\}$. It is well known, for example, that the completeness of the set $\{ {e^{i{\lambda _n}t}}\}$ ensures that of $\{ {e^{i{\mu _n}t}}\}$ whenever $\sum {|{\lambda _n} - {\mu _n}| < \infty }$. In this note we establish two results which guarantees that if $\{ {e^{i{\lambda _n}t}}\}$ is a Schauder basis for ${L^2}( - \pi ,\pi )$, then $\{ {e^{i{\mu _n}t}}\}$ is also a Schauder basis whenever $\{ {\mu _n}\}$ is “sufficiently close” to $\{ {\lambda _n}\}$.References
- William O. Alexander Jr. and Ray Redheffer, The excess of sets of complex exponentials, Duke Math. J. 34 (1967), 59–72. MR 206614
- N. K. Bari, Biorthogonal systems and bases in Hilbert space, Moskov. Gos. Univ. Učenye Zapiski Matematika 148(4) (1951), 69–107 (Russian). MR 0050171
- R. J. Duffin and J. J. Eachus, Some notes on an expansion theorem of Paley and Wiener, Bull. Amer. Math. Soc. 48 (1942), 850–855. MR 7173, DOI 10.1090/S0002-9904-1942-07797-4
- R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341–366. MR 47179, DOI 10.1090/S0002-9947-1952-0047179-6
- Jürgen Elsner, Zulässige Abänderungen von Exponentialsystemen im $L^{p}(-A, A)$, Math. Z. 120 (1971), 211–220. MR 435721, DOI 10.1007/BF01117495
- V. I. Gurariĭ and N. I. Gurariĭ, Bases in uniformly convex and uniformly smooth Banach spaces, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 210–215 (Russian). MR 0283549
- M. Ĭ. Kadec′, The exact value of the Paley-Wiener constant, Dokl. Akad. Nauk SSSR 155 (1964), 1253–1254 (Russian). MR 0162088
- Norman Levinson, Gap and Density Theorems, American Mathematical Society Colloquium Publications, Vol. 26, American Mathematical Society, New York, 1940. MR 0003208
- Raymond E. A. C. Paley and Norbert Wiener, Fourier transforms in the complex domain, American Mathematical Society Colloquium Publications, vol. 19, American Mathematical Society, Providence, RI, 1987. Reprint of the 1934 original. MR 1451142, DOI 10.1090/coll/019
- Ivan Singer, Bases in Banach spaces. I, Die Grundlehren der mathematischen Wissenschaften, Band 154, Springer-Verlag, New York-Berlin, 1970. MR 0298399
- Robert M. Young, Interpolation in a classical Hilbert space of entire functions, Trans. Amer. Math. Soc. 192 (1974), 97–114. MR 357823, DOI 10.1090/S0002-9947-1974-0357823-6
- Robert M. Young, An extension of the Hausdorff-Young theorem, Proc. Amer. Math. Soc. 45 (1974), 235–236. MR 364990, DOI 10.1090/S0002-9939-1974-0364990-2
- Robert M. Young, A note on a trigonometric moment problem, Proc. Amer. Math. Soc. 49 (1975), 411–415. MR 367548, DOI 10.1090/S0002-9939-1975-0367548-5
- Robert M. Young, On perturbing bases of complex exponentials in $L^{2}$ $(-\pi ,\,\pi )$, Proc. Amer. Math. Soc. 53 (1975), no. 1, 137–140. MR 377075, DOI 10.1090/S0002-9939-1975-0377075-7
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 61 (1976), 315-319
- MSC: Primary 42A64
- DOI: https://doi.org/10.1090/S0002-9939-1976-0425499-2
- MathSciNet review: 0425499