ON THE FACIAL STRUCTURE OF A CONVEX BODY

J. B. COLLIER

Abstract. The family formed by taking the relative interior of each face of a d-dimensional convex body C is a partition of C. It is shown here that the subfamily consisting of all the $(d - 2)$-dimensional sets has a quotient topology which is paracompact and this is used to prove a property of the set of extreme points when $d = 3$.

A convex body in E^d is any closed bounded convex subset C with nonempty interior. A flat is any translate of a subspace. A face of C is a convex subset F which is the intersection of C with a flat such that $C \setminus F$ is also convex. Thus the extreme points of C are exactly the 0-dimensional faces of C. The set of extreme points of C will be denoted by $\text{ext } C$ and for any set A the boundary of A and the closure of A will be denoted by $\text{bd } A$ and $\text{cl } A$, respectively.

It is easily seen that if C is 2-dimensional, then $\text{ext } C$ is a closed set. This need not be true in higher dimensions. In fact, there is a convex body C in E^3 for which $\text{ext } C$ and $\text{bd } C \setminus \text{ext } C$ are both dense in $\text{bd } C$ (see [4, p. 104]). However, we can show the following relationship between $\text{ext } C$ and its closure:

Theorem 1. If C is a convex body in E^3, then each component of $\text{cl}(\text{ext } C) \setminus \text{ext } C$ is a subset of a 1-dimensional face of C.

Klee raised the question [4] of characterizing the family χ of all subsets K of the 2-sphere, S^2, for which there is a convex body C in E^3 and a homeomorphism h of S^2 onto $\text{bd } C$ such that $h[K] = \text{ext } C$. In [1] it was shown that if $\text{cl } K$ is 0-dimensional, then $K \in \chi$ if and only if K is a G_δ set. Theorem 1 indicates that this result cannot be substantially generalized. For example, if K is a countable subset of S^2, but $\text{cl}[K] \setminus K$ is a circle, then $K \notin \chi$.

Our proof of Theorem 1 depends on an interesting property of the 1-dimensional faces of a convex body in E^3. More generally, we consider for any convex body C in E^d, $d \geq 3$, the family $\mathcal{E}(C) = \{\text{ri } F | F \text{ is a } (d - 2)\text{-dimensional face of } C\}$, where $\text{ri } F$ denotes the relative interior of F. Recall that the relative interior of F is the interior of F relative to the smallest flat containing it. It is easily seen that $\mathcal{E}(C)$ is a family of pairwise disjoint subsets of $\text{bd } C$ and, consequently, the usual quotient topology may be associated with
it. In general, this topology fails to be metrizable; however, we can show the following:

Theorem 2. For any convex body \(C \) in \(E^d \), \(\mathcal{L}(C) \) is paracompact.

This may be compared to the easily observed fact that the quotient topology for the family \(\{ \text{ri} F | F \text{ is a } (d - 1) \text{-dimensional face of } C \} \) is countable and discrete.

We assume in the remainder of the paper that \(C \) is a convex body in \(E^d \), \(d \geq 3 \), \(X = \bigcup \{ A | A \in \mathcal{L}(C) \} \), and \(i : X \to \mathcal{L}(C) \) is defined by \(x \in i(x) \). Thus the quotient topology on \(\mathcal{L}(C) \) is the largest topology which makes \(i \) continuous. Let \(Y \) be the set of all points in \(\text{bd} C \) which do not lie in the relative interior of some \((d - 1) \)-dimensional face of \(C \). Clearly \(Y \) is a closed set containing \(X \). Moreover, \(X \) is an \(F_\sigma \) set since \(X = \bigcup_{n=1}^{\infty} K_n \) where \(K_n \) is the set of all points which are the center of some closed \((d - 2) \)-dimensional ball of radius \(1/n \) contained in \(Y \). Any limit point of \(K_n \) also has this property; hence \(K_n \) is closed.

For any \(S \subseteq E^d \) and \(\epsilon > 0 \), let \(N(S, \epsilon) \) be the open set of all points that lie within \(\epsilon \) of \(S \).

Lemma 1. For each \(A \in \mathcal{L}(C) \) and \(\epsilon > 0 \), there is a closed neighborhood of \(A \) in \(\mathcal{L}(C) \) whose members are contained in \(N(A, \epsilon) \).

Proof. An open subset \(U \) of \(\text{bd} C \) will be called \(L \)-open if for each \(B \in \mathcal{L}(C) \), \(U \cap B \neq \emptyset \) implies that \(B \subseteq U \). In this case \(\mathcal{U} = \{ B \in \mathcal{L}(C) | U \cap B \neq \emptyset \} \) is open in \(\mathcal{L}(C) \). Let \(K = \text{bd} C \setminus N(A, \epsilon) \) and \(a_1 \in A \). Since \(K \) is compact, it suffices to show that for each \(x \in K \), \(a_1 \) and \(x \) have disjoint \(L \)-open neighborhoods.

Let \(a_2 \in K \) and let \(F \) be the smallest face of \(C \) containing both \(a_1 \) and \(a_2 \). Since \(a_1 \) is in the relative interior of a \((d - 2) \)-dimensional face, either \(F = C \) or \(F \) has dimension \(d - 1 \). Let \(M \) be the subspace of codimension 1 which is perpendicular to the line through \(a_1 \) and \(a_2 \) and let \(\pi \) be the orthogonal projection of \(E^d \) onto \(M \). Thus \(\pi(a_1) = \pi(a_2) \). Choose some point \(b \) on the line \(M^\perp \) other than the origin and for \(m \in \pi[C] \) define the functions \(f_i(m) = \inf\{ r \in \mathbb{R} | m + rb \in C \} \) and \(f_2(m) = \sup\{ r \in \mathbb{R} | m + rb \in C \} \). We may assume \(a_1 \) is in the graph of \(f_1 \). Clearly \(f_1 \) is convex and \(f_2 \) is concave.

Let \(U_i = \{(x, f_i(x)) | x \in \text{ri} \pi[C] \} \); then \(U_1 \) and \(U_2 \) are disjoint \(L \)-open sets. If \(F = C \), then \(a_1 \in U_i \) and we are done. If \(F \neq C \), let \(V_i = \{(x, f_i(x)) | x \in \text{ri} \pi[F] \} \). Choose a point \(q \in \text{ri} F \), let \(W_i \) be the convex hull of \(V_i \cup \{ q \} \), and let \(V' = V_i \cup \text{ri} W_i \). Then \(U_i = U_i \cup V_i \) is an \(L \)-open set containing \(a_i \) and \(U'_i \), \(U_2 \) are disjoint.

Proof of Theorem 2. Lemma 1 implies that \(\mathcal{L}(C) \) is Hausdorff and the second countability of \(E^d \) implies \(\mathcal{L}(C) \) is Lindelöf. Therefore, by a theorem of Morita [2, p. 174], it is sufficient to show \(\mathcal{L}(C) \) regular in order to show that it is paracompact. Let \(\mathcal{K} \) be any closed subfamily of \(\mathcal{L}(C) \) and \(A \in \mathcal{L}(C) \setminus \mathcal{K} \).

We exhibit a closed neighborhood of \(\mathcal{K} \) not containing \(A \).

Since \(X \) is \(\sigma \)-compact and \(i : X \to \mathcal{L}(C) \) is continuous, \(\mathcal{L}(C) \) is also \(\sigma- \)
compact. Hence \(\mathcal{K} \) is the union of some sequence \(\mathcal{K}_1 \subseteq \mathcal{K}_2 \subseteq \cdots \) of compact subfamilies of \(\mathcal{E}(C) \). Let \(K_n = \bigcup \{B \mid B \in \mathcal{K}_n\} \). It follows from Lemma 1 and the compactness of \(\mathcal{K}_n \) that \(K_n \) has a closed neighborhood \(\mathcal{W}_n \) contained in \(N(K_n, 1/n) \) such that \(A \notin \mathcal{W}_n \). Let \(\mathcal{W} = \bigcup_{n=1}^\infty \mathcal{W}_n \), \(W_n = \bigcup \{B \mid B \in \mathcal{W}_n\} \), \(W = \bigcup_{n=1}^\infty W_n \), and \(K = \bigcup_{n=1}^\infty K_n \). Clearly, \(\mathcal{W} \) is a neighborhood of \(\mathcal{K}, A \notin \mathcal{W}, \) and \(K_n \subseteq W_n \) for each \(n \).

Since \(\mathcal{W} \) is closed if and only if \(W \) is closed relative to \(X \), suppose that there is an \(x \in (X \cap \text{cl} W) \setminus W \). Because \(W_n \) is closed relative to \(X \) for each \(n \), \(x \) must be in the closure of \(\bigcup_{k=1}^\infty W_k \) for each \(k \). Hence \(x \in N(K, 1/k) \) for each \(k \). Since \(K \) is closed relative to \(X \), \(x \in K \). This is a contradiction since \(K \subseteq W \) and the theorem follows. \(\square \)

Remark. A straightforward modification of the above proof shows that, in fact, any subfamily of \(\mathcal{E}(C) \) is paracompact.

Proof of Theorem 1. Let \(C \) be a convex body in \(E^3 \) and \(D = \text{cl}(\text{ext} C) \setminus \text{ext} C \); then \(\text{ext} C \) and \(X \) form a partition of the closed set \(Y \) and therefore \(D \subseteq X \). Let \(\mathcal{K} = \{A \in \mathcal{E}(C) \mid A \cap D \neq \emptyset\} \) and \(K = \bigcup \{A \mid A \in \mathcal{K}\} \). Since \(\iota : X \to \mathcal{E}(C) \) is continuous, components of \(D \) are mapped into components of \(\mathcal{K} \). In the remainder of the proof we show that \(\mathcal{K} \) must be totally disconnected and this implies Theorem 1.

Since \(X \) is an \(F_\sigma \), \(D \) is an \(F_\sigma \). Let \(D \) be the union of compact subsets \(D_1, D_2, \ldots \) and let \(\mathcal{D}_n = \{A \in \mathcal{E}(C) \mid A \cap D_n \neq \emptyset\} \). The continuity of \(\iota \) implies that \(\mathcal{D}_n \) is compact and therefore closed since \(\mathcal{E}(C) \) is Hausdorff. Thus each set \(D'_n = \bigcup \{A \mid A \in \mathcal{D}_n\} \) is closed relative to \(X \) and must also be an \(F_\sigma \).

It follows that \(K = \bigcup_{n=1}^\infty D'_n \) is an \(F_\sigma \) set. Let \(K \) be the union of the sequence \(V_1 \subseteq V_2 \subseteq \cdots \) of compact sets.

For each rational number \(r \) and each integer \(i, 1 \leq i \leq 3 \), the set \(\{(x_1, x_2, x_3) \in E^3 \mid x_i = r\} \) is a plane in \(E^3 \). Let \(H_1, H_2, \ldots \) be an enumeration of these planes. If \(A \) is any member of \(\mathcal{K} \), there is an integer \(N \) such that for each \(n \geq N, A \cap V_n \) contains an open line segment. Thus for some \(n \geq N \) there is an \(H_n \) which intersects \(A \cap V_n \) in a single point. Let \(K_n \) be the union of all singleton sets of the form \(A \cap V_n \cap H_n \) where \(A \in \mathcal{K} \). If \(x \in (V_n \cap H_n) \setminus K_n \), then \(x \in A \) for some \(A \in \mathcal{K} \) but \(A \cap V_n \cap H_n \) contains more than one point. In this case \(A \subseteq H_n \). If \(K_n \neq \emptyset \), then \(H_n \cap \text{ri} C \neq \emptyset \) and \(A \) is open relative to \(\text{bd} C \cap H_n \), which implies that \(K_n \) is a closed set. Let \(\mathcal{K}_n = \{A \in \mathcal{K} \mid A \cap K_n \neq \emptyset\} \); then \(\mathcal{K} = \bigcup_{n=1}^\infty \mathcal{K}_n \). Moreover, since \(\iota/K_n \) is one-to-one, \(K_n \) is compact, and \(\mathcal{E}(C) \) is Hausdorff, it follows that \(\mathcal{K}_n \) is homeomorphic to \(K_n \).

For each \(x \in X \), let \(f(x) \) be the smallest face of \(C \) containing \(x \). Clearly, \(f(x) = \text{cl} \iota(x) \). If \(\{a_n\} \) is a sequence in \(X \), then \(\lim f(a_n) = \{x \mid f(a_n) \text{ frequently intersects each neighborhood of } x\} \) and \(\lim f(a_n) = \{x \mid f(a_n) \text{ eventually intersects each neighborhood of } x\} \). The function \(f \) is called upper semicontinuous [resp., lower semicontinuous] at \(a \in X \) if for each sequence \(\{a_n\} \) in \(X \) converging to \(a \), \(\lim f(a_n) \subseteq f(a) \) [resp., \(\lim f(a_n) \supseteq f(a) \)]. A slight modification of a theorem of Klee and Martin [5, p. 6] shows that \(f \) is upper semicontinuous at each point of \(X \).
Suppose K_n contains an open line segment S. A theorem of Fort [3, p. 287] implies that f/S is lower semicontinuous, as well as upper semicontinuous, at some point $s \in S$. It follows from this that X is a neighborhood of $\Delta(s) = A$ in $\text{bd} C$. Since this contradicts the assumption that $\text{cl}(\text{ext } C) \cap A \neq \emptyset$, K_n can contain no open line segment. Hence K_n is 0-dimensional.

Suppose A_1 and A_2 are distinct members of \mathcal{K}. For $i = 1, 2$, we construct sequences $\mathcal{W}_0 \subseteq \mathcal{W}_1 \subseteq \cdots$ of closed neighborhoods of A_i in $\mathcal{C}(C)$ such that K_n lies in the interior of $\mathcal{W}_n \cup \mathcal{W}_n^2$ but $\mathcal{W}_n^1 \cap \mathcal{W}_n^2 = \emptyset$. Recall that $\mathcal{C}(C)$ is normal since it is paracompact. Let \mathcal{W}_0^1 and \mathcal{W}_0^2 be any disjoint closed neighborhoods of A_1 and A_2, respectively. Assume that \mathcal{W}_{n-1}^1 and \mathcal{W}_{n-1}^2 have been constructed for some $n \geq 1$. Let $\mathcal{K}_n^i = K_n \cap \mathcal{W}_{n-1}^i$. Since K_n is homeomorphic to the compact, 0-dimensional set K_n and K_n^1 and K_n^2 are disjoint closed subfamilies of K_n, there exist disjoint closed subfamilies $\mathcal{F}_n^1 \supseteq K_n^1$ such that $K_n = \mathcal{W}_n^1 \cup \mathcal{W}_n^2$. Let \mathcal{W}_n^1 and \mathcal{W}_n^2 be disjoint closed neighborhoods of $\mathcal{W}_{n-1}^1 \cup \mathcal{W}_n^1$ and $\mathcal{W}_{n-1}^2 \cup \mathcal{W}_n^2$, respectively. Let \mathcal{W}_n be the interior of $\bigcup_{n=1}^{\infty} \mathcal{W}_n^i$; then \mathcal{W}_1 and \mathcal{W}_2 are disjoint neighborhoods of A_1 and A_2, respectively, and $K \subseteq \mathcal{W}_1 \cup \mathcal{W}_2$. Therefore A_1 and A_2 belong to different components of \mathcal{K}. Since A_1 and A_2 were arbitrary members of \mathcal{K}, \mathcal{K} is totally disconnected. □

References

Department of Mathematics, University of Southern California, Los Angeles, California 90007

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use