Stationary points of $(Z_{2})^{k}$-actions
HTML articles powered by AMS MathViewer
- by Frank L. Capobianco
- Proc. Amer. Math. Soc. 61 (1976), 377-380
- DOI: https://doi.org/10.1090/S0002-9939-1976-0425993-4
- PDF | Request permission
Abstract:
This paper classifies up to bordism the manifolds with ${({Z_2})^k}$-action fixing $RP(n),\;CP(n)$, or ${S^n}$.References
- J. M. Boardman, On manifolds with involution, Bull. Amer. Math. Soc. 73 (1967), 136–138. MR 205260, DOI 10.1090/S0002-9904-1967-11683-5
- P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 33, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964. MR 0176478
- A. S. Miščenko, Involutions of manifolds with fixed point set diffeomorphic to a real projective space, Mat. Zametki 9 (1971), 249–252 (Russian). MR 295376
- R. E. Stong, Equivariant bordism and $(Z_{2})^{k}$ actions, Duke Math. J. 37 (1970), 779–785. MR 271966, DOI 10.1215/S0012-7094-70-03793-2
- R. E. Stong, Involutions fixing projective spaces, Michigan Math. J. 13 (1966), 445–447. MR 206979, DOI 10.1307/mmj/1028999602 T. tom Dieck, Kobordismen-theorie und Transformationsgruppen, Aarhus Univ., 1969.
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 61 (1976), 377-380
- MSC: Primary 57D85
- DOI: https://doi.org/10.1090/S0002-9939-1976-0425993-4
- MathSciNet review: 0425993