The preparation theorem and the freeness of $A[[X]]/I$
HTML articles powered by AMS MathViewer
- by S. H. Cox
- Proc. Amer. Math. Soc. 61 (1976), 227-231
- DOI: https://doi.org/10.1090/S0002-9939-1976-0427317-5
- PDF | Request permission
Abstract:
Let $I$ be a nonzero ideal of $A[[X]]$, the ring of formal power series over a commutative Noetherian ring $A$. These are equivalent: (i) $I$ is generated by a single series $f = {a_0} + {a_1}X + \ldots$ such that for some $s,\;{a_s}$ is a unit, the first $s$ coefficients ${a_0}, \ldots ,{a_{s - 1}}$ of $f$ lie in the Jacobson radical of $A$ and $A$ is complete in the adic topology defined by the ideal they generate. (ii) $A[[X]]/I$ is a free $A$-module.References
- N. Bourbaki, Éléments de mathématique. Fasc. XXI. Algèbre commutative. Chap. 7, Actualités Sci. Indust., no. 1314, Hermann, Paris, 1965. MR 41 #5339.
- Ana M. D. Viola-Prioli, Flat analytic extensions, Trans. Amer. Math. Soc. 202 (1975), 385–404. MR 389891, DOI 10.1090/S0002-9947-1975-0389891-0 N. Bourbaki, Éléments de mathématique. Fasc. XXVIII. Algèbre commutative. Chaps. 3, 4, Actualités Sci. Indust., no. 1293, Hermann, Paris, 1961. MR 30 #2027.
- Jack Ohm and David E. Rush, Content modules and algebras, Math. Scand. 31 (1972), 49–68. MR 344289, DOI 10.7146/math.scand.a-11411 N. Bourbaki, Éléments de mathématique. Fasc. XXVII. Algèbre commutative. Chaps. 1, 2, Actualités Sci. Indust., no. 1290, Hermann, Paris, 1961. MR 36 #146.
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 61 (1976), 227-231
- MSC: Primary 14D15; Secondary 13B05, 13J05, 14B10
- DOI: https://doi.org/10.1090/S0002-9939-1976-0427317-5
- MathSciNet review: 0427317