THE EQUIVALENCE OF
VARIOUS LIPSCHITZ CONDITIONS ON THE
WEIGHTED MEAN OSCILLATION
OF A FUNCTION

EDWARD P. LOTKOWSKI AND RICHARD L. WHEEDEN

ABSTRACT. The main result establishes the equivalence of various Lipschitz-like conditions on the weighted mean oscillation over cubes of a function. Previously known results are obtained as special cases.

Introduction. In [3], John and Nirenberg proved that if \(f \) is a function of bounded mean oscillation, i.e., if

\[
\int_I |f(x) - f_I| \, dx \leq c|I|,
\]

for all cubes \(I \subset \mathbb{R}^n \), with \(c \) independent of \(I \), then there exist positive constants \(c_1 \) and \(c_2 \) depending only on \(n \) such that

\[
|\{x \in I : |f(x) - f_I| > \alpha\}| \leq c_1 e^{-c_2 \alpha/\alpha} |I|
\]

for all \(I \) and \(\alpha > 0 \). In [7] Muckenhoupt and Wheeden derived an analogous result for functions of weighted bounded mean oscillation, by which we mean those \(f \) with

\[
\int_I |f(x) - f_I| \, dx \leq c \int_I w(x) \, dx
\]

for all \(I \), where \(w \) is nonnegative and satisfies appropriate conditions.

Meyers [5] and Campanato [1] showed independently that the condition

\[
\int_I |f(x) - f_I| \, dx \leq c |I|^{1+\varepsilon}
\]

for an \(\varepsilon \) satisfying \(0 < \varepsilon \leq 1 \) is equivalent (after redefining \(f \) in a set of measure 0) to Lipschitz continuity of order \(\varepsilon \). Two different weighted versions of this result were then obtained by Cuerva [2] and Lotkowski [4]. Our main theorem generalizes and unifies these latter results, as we shall indicate below.

We first list some definitions. If \(\mu \) is a Borel measure which is positive and...
finite on cubes and \(f \) is locally integrable with respect to \(\mu \), then \(f_{I, \mu} \) (or simply \(f_I \)) will denote the average of \(f \) over \(I \) with respect to \(\mu \):

\[
f_I = f_{I, \mu} = \frac{1}{\mu(I)} \int_I f(x) \, d\mu(x).
\]

For \(a > 0 \), \(aI \) will denote the cube concentric with \(I \) whose edge length is \(a \) times that of \(I \). We shall be concerned only with measures which satisfy the doubling condition

\[
\mu(2I) \leq c \mu(I)
\]

for every \(I \), with \(c \) independent of \(I \). It is an easy consequence of (1) that two cubes of equal size whose centers are at a distance bounded by a fixed multiple of their edge length have equivalent \(\mu \) measure. For \(1 < p < \infty \), a nonnegative function \(u \) is said to belong to \(A_p(\mu) \) if there is a constant \(c \) such that for all \(I \)

\[
\left(\frac{1}{\mu(I)} \int_I u(x) \, d\mu(x) \right) \left(\frac{1}{\mu(I)} \int_I u(x)^{-1/(p-1)} \, d\mu(x) \right)^{p-1} \leq c.
\]

Similarly, \(u \) is said to belong to \(A_1(\mu) \) if

\[
u^*_\mu(x) \leq cu(x) \quad \text{a.e. (} \mu \text{)}
\]

with \(c \) independent of \(x \), where \(u^*_\mu \) is the Hardy-Littlewood maximal function of \(u \) with respect to \(\mu \):

\[
u^*_\mu(x) = \sup \left\{ \frac{1}{\mu(I)} \int_I u(t) \, d\mu(t) : x \in I \right\}.
\]

\(F(I) \) will denote a positive function of cubes for which there exist constants \(\alpha, \beta \) and \(c \) such that \(1 < \alpha < \beta, c > 0 \) and

\[
F(I) \leq c F(J) \quad \text{if} \quad I \subset J,
\]

\[
\alpha F(I) \leq F(2I) \leq \beta F(I).
\]

It is crucial for what follows that \(\alpha \) strictly exceed 1. An example of such an \(F \) is

\[
F(I) = [\mu_1(I)]^{e_1} \cdots [\mu_m(I)]^{e_m}
\]

with \(\mu_j \) satisfying (1) and \(e_j > 0 \) for \(1 \leq j \leq m \).

We shall often use the same letter \(c \) to denote different constants which are independent of \(x \) and \(I \). For a function \(g \) which is nonzero a.e., \(g^{-1} \) will denote the function \(1/g \).

Our main result is given by the following theorem.

Theorem. Suppose that \(g \) is nonnegative and locally integrable with respect to
that the measure $g \, d\mu$ satisfies (1), and that F satisfies (4) and (5). If $1 \leq p < \infty$ and $g^{-1} \in A_p(g \, d\mu)$, then the condition

$$\int_I |f(x) - f_I| g(x) \, d\mu(x) \leq c \mu(I) F(I), \quad f_I = f_{I,d\mu},$$

is equivalent to

$$\int_I \{|f(x) - f_I| g(x)|^{p'} \, d\mu(x) \leq c \mu(I) F(I)^{p'}, \quad 1/p + 1/p' = 1.$$

In case $p = 1$, we have $p' = \infty$, and (7) should be interpreted in the L^∞ sense:

$$\operatorname{ess sup}_I \{|f(x) - f_I| g(x)| \leq c F(I),$$

the ess sup being taken with respect to $d\mu$, or equivalently $g \, d\mu$.

Before proceeding with the proof, we list two important special cases. First, given $\varepsilon > 0$ and a weight function w, we choose

$$\mu(I) = \int_I w(x) \, dx, \quad F(I) = \left[\int_I w(x) \, dx \right]^{\varepsilon}, \quad g(x) = w(x)^{-1},$$

obtaining that for $1 < p < \infty$, the condition

$$\int_I |f(x) - f_I| w(x)^{-1/2} \, dx \leq c \left[\int_I w(x) \, dx \right]^{1+\varepsilon}, \quad f_I = f_{I,dx},$$

is equivalent to

$$\int_I |f(x) - f_I|^{p'} w(x)^{-1/(p-1)} \, dx \leq c \left[\int_I w(x) \, dx \right]^{1+\varepsilon p'}, \quad 1/p + 1/p' = 1,$$

provided that $w \in A_p(dx)$. If $w \in A_1(dx)$, (9) is equivalent to

$$\operatorname{ess sup}_I \{|f(x) - f_I| w(x)^{-1} \leq c \left[\int_I w(x) \right]^{\varepsilon},$$

the ess sup being with respect to Lebesgue measure. Results of this type were proved in [2], using duality methods.

Taking μ and v to satisfy (1), $F(I) = v(I)\varepsilon$ and $g(x) = 1$, one obtains that for any $p \geq 1$, the condition

$$\int_I |f(x) - f_I|^{p'} d\mu(x) \leq c \mu(I) v(I)^{p'}, \quad f_I = f_{I,d\mu},$$

is equivalent to

$$|f(x) - f_I| \leq cv(I)^{\varepsilon} \quad \text{for a.e.} \ (d\mu) x \in I,$$

since in this case g trivially satisfies the A_p condition for any $p \geq 1$. This may be found in [4].
Proof of the Theorem. The hard part of the proof is the implication (6) ⇒ (7), the opposite one being an immediate corollary of Hölder's inequality. The proof we give is based on the methods used in [1] and [4]. We would like to thank Professor C. Fefferman for a useful comment concerning the proof of Lemma 1.

Lemma 1. Let μ and ν satisfy (1), and F satisfy (4) and (5). If

\[\int_I |f(x) - f_I| d\nu(x) \leq c \mu(I) F(I), \quad f_I = f_{I, \nu}, \]

then for a.e. \((\nu) x \in I,\)

\[|f(x) - f_I| \leq c F(I) \sup\{(\mu(J)/\nu(J)): x \in J \subset 2I\}. \]

Proof. For \(x \in I,\) let \(I_x\) denote the cube centered at \(x\) with the same edge length as \(I.\) We first claim that

\[|f_I - f_{I_x}| \leq c F(I) \frac{\mu(I)}{\nu(I)}. \]

In fact,

\[|f_I - f_{I_x}| \leq |f_I - f_{2I_x}| + |f_{2I_x} - f_{I_x}| \]
\[= \left| \frac{1}{\nu(I)} \int_I (f(t) - f_{2I_x}) d\nu(t) \right| + \left| \frac{1}{\nu(I_x)} \int_{I_x} (f(t) - f_{2I_x}) d\nu(t) \right|. \]

Using (10) to estimate the last integral, and then applying (1), (4) and (5), we obtain (12).

Next, we will show that for a.e. \((\nu) x \in I,\)

\[|f(x) - f_{I_x}| \leq c F(I) \sup\{(\mu(J)/\nu(J)): x \in J \subset 2I\}. \]

To see this, set \(I_k = 2^{-k} I_x,\) and note that for a.e. \((\nu) x \in I,\) differentiation of the integral gives

\[|f(x) - f_{I_x}| \leq \sum_{k=0}^{\infty} |f_k - f_{k+1}|. \]

However,

\[|f_k - f_{k+1}| \leq \frac{1}{\nu(I_{k+1})} \int_{I_{k+1}} |f(t) - f_k| d\nu(t) \]
\[\leq \frac{1}{\nu(I_k)} \int_{I_k} |f(t) - f_k| d\nu(t) \]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
by (1) and the fact that $I_{k+1} \subseteq I_k$. Hence, by (10),

$$|f_{I_k} - f_{I_{k+1}}| \leq \frac{c}{\nu(I_k)} \mu(I_k) F(I_k).$$

Since $2^k I_k = I_e$, (4) and (5) imply that $F(I_k) \leq c \alpha^{-k} F(I)$. Combining estimates, we obtain that for a.e. $(d\nu)x \in I$,

$$|f(x) - f_{I_k}| \leq c F(I) \sum_{k=0}^{\infty} \frac{\alpha^{-k} \mu(I_k)}{\nu(I_k)} \leq c F(I) \left(\sup_{J} \frac{\mu(J)}{\nu(J)} \right) \sum_{k=0}^{\infty} \alpha^{-k},$$

where the sup is taken over all cubes J such that $x \in J$ and $J \subseteq 2I$. Since $\alpha > 1$, the series converges and (13) follows. Combining (12) and (13) concludes the proof of the lemma.

We shall also use the following fact:

Lemma 2. Let ν be a Borel measure which satisfies (1), and let f_ν^* denote the Hardy-Littlewood maximal function of f with respect to ν:

$$f_\nu^*(x) = \sup \left\{ \frac{1}{\nu(J)} \int_J |f| \, d\nu(i) : x \in J \right\}.$$

If $u \in A_p(d\nu)$, $1 < p < \infty$, then there is a constant c, independent of f, such that

$$\int_{\mathbb{R}^n} f_\nu^*(x)^p u(x) \, d\nu(x) \leq c \int_{\mathbb{R}^n} |f(x)|^p u(x) \, d\nu(x).$$

This is a restatement of Theorem 7 of [6].

We now turn to the proof of the theorem, first showing that the assumptions on $g d\mu$ and g^{-1} imply that μ satisfies (1). Hölder's inequality and $g^{-1} \in A_p(g d\mu)$ imply

$$\left[\int_I g \, d\mu \right]^p \leq \mu(I) \left[\int_I g^{p/(p-1)} \, d\mu \right]^{p-1} \leq c \left[\int_I g \, d\mu \right]^p. \quad (14)$$

Since the same relation holds for $2I$,

$$\mu(2I) \left[\int_{2I} g^{p/(p-1)} \, d\mu \right]^{p-1} \leq c \left[\int_{2I} g \, d\mu \right]^p \leq c \left[\int_I g \, d\mu \right]^p,$$

by (1) for $g d\mu$. Hence, by the first inequality (14), $\mu(2I) \leq c \mu(I)$.

If we set $d\nu = g \, d\mu$, then hypothesis (6) of the theorem is the same as (10) of Lemma 1. Hence, by Lemma 1, for a.e. $(d\nu)x \in I$,

$$|f(x) - f_{I_k}| \leq c F(I) \sup_{J} (\mu(J)/\nu(J)). \quad x \in J \subseteq 2I,$$
where $f_I = f_{I, dv}$. If χ_{2I} denotes the characteristic function of $2I$, it follows from the formula
\[\mu(I) = \int_I g^{-1} dv \]
that
\[|f(x) - f_I| \leq cF(I)[g^{-1}\chi_{2I}]^*(x) \quad \text{for a.e. } (dv) x \in I. \tag{15} \]

For $1 < p < \infty$, multiply both sides of (15) by $g(x)$, raise the result to the power p', and then integrate over I with respect to $d\mu$, obtaining
\[\int_I (|f - f_I| g)^{p'} d\mu \leq cF(I)^{p'} \int_{\mathbb{R}^n} \left([g^{-1}\chi_{2I}]^* \right)^{p'} g^{p'-1} dv. \tag{16} \]

It is easy to see that the assumption $g^{-1} \in A_p(dv)$ is equivalent to $g^{p-1} \in A_p(dv)$. Hence, Lemma 2 shows that the expression on the right in (16) is at most
\[cF(I)^{p'} \int_{2I} g^{-p'} g^{p'-1} dv = cF(I)^{p'} \mu(2I). \]

Since μ satisfies (1), we obtain
\[\int_I (|f - f_I| g)^{p'} d\mu \leq cF(I)^{p'} \mu(I), \]
as desired. If $p = 1$, the hypothesis $g^{-1} \in A_1(dv)$ gives
\[[g^{-1}]^* \leq cg^{-1} \quad \text{a.e.} \]

Combining this with (15) proves (8). Thus, the proof of the theorem is complete.

As a final remark, we note that the proof given above does not yield the results on bounded mean oscillation mentioned previously, since these correspond to $F(I) = 1$, which fails to satisfy (5) (α must strictly exceed 1 there, in order that the series in Lemma 1 converge).

References