Meromorphic functions and smooth analytic functions
HTML articles powered by AMS MathViewer
- by Robert Kaufman
- Proc. Amer. Math. Soc. 61 (1976), 272-274
- DOI: https://doi.org/10.1090/S0002-9939-1976-0427633-7
- PDF | Request permission
Abstract:
Meromorphic functions with many zeroes can have logarithmic derivatives that are relatively smooth. We prove this, with a new construction of smooth analytic functions with many zeroes. Our examples belong to the theory of differential fields of functions.References
- Steven B. Bank, On the existence of meromorphic solutions of differential equations having arbitrarily rapid growth, J. Reine Angew. Math. 288 (1976), 176–182. MR 430371, DOI 10.1515/crll.1976.288.176
- G. M. Golusin, Geometrische Funktionentheorie, Hochschulbücher für Mathematik, Band 31, VEB Deutscher Verlag der Wissenschaften, Berlin, 1957 (German). MR 0089896
- James D. Nelson, A characterization of zero sets for $A^{\infty }$, Michigan Math. J. 18 (1971), 141–147. MR 283177
- Walter Rudin, The radial variation of analytic functions, Duke Math. J. 22 (1955), 235–242. MR 79093
- Walter Rudin, On a problem of Bloch and Nevanlinna, Proc. Amer. Math. Soc. 6 (1955), 202–204. MR 67992, DOI 10.1090/S0002-9939-1955-0067992-7
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- B. A. Taylor and D. L. Williams, Zeros of Lipschitz functions analytic in the unit disc, Michigan Math. J. 18 (1971), 129–139. MR 283176
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 61 (1976), 272-274
- MSC: Primary 30A68
- DOI: https://doi.org/10.1090/S0002-9939-1976-0427633-7
- MathSciNet review: 0427633