Unbounded derivations of group $C^*$-algebras
HTML articles powered by AMS MathViewer
- by Christopher Lance and Assadollah Niknam
- Proc. Amer. Math. Soc. 61 (1976), 310-314
- DOI: https://doi.org/10.1090/S0002-9939-1976-0428051-8
- PDF | Request permission
Abstract:
We describe a construction which yields unbounded derivations and strongly continuous one-parameter automorphism groups of certain group ${C^{\ast }}$-algebras. As an application, we show that a simple ${C^{\ast }}$-algebra can have an automorphism group which is not approximately inner.References
- Ola Bratteli and Derek W. Robinson, Unbounded derivations of $C^{\ast }$-algebras, Comm. Math. Phys. 42 (1975), 253–268. MR 377526, DOI 10.1007/BF01608976
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964 (French). MR 0171173
- Frederick P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, No. 16, Van Nostrand Reinhold Co., New York-Toronto-London, 1969. MR 0251549
- Robert T. Powers, Simplicity of the $C^{\ast }$-algebra associated with the free group on two generators, Duke Math. J. 42 (1975), 151–156. MR 374334
- Robert T. Powers and Shôichirô Sakai, Existence of ground states and KMS states for approximately inner dynamics, Comm. Math. Phys. 39 (1974/75), 273–288. MR 359623, DOI 10.1007/BF01705375
- Robert T. Powers and Shôichirô Sakai, Unbounded derivations in operator algebras, J. Functional Analysis 19 (1975), 81–95. MR 0383093, DOI 10.1016/0022-1236(75)90007-5
- Shôichirô Sakai, On one-parameter subgroups of $^*$-automorphisms on operator algebras and the corresponding unbounded derivations, Amer. J. Math. 98 (1976), no. 2, 427–440. MR 412824, DOI 10.2307/2373896
- Shôichirô Sakai, On commutative normal $^*$-derivations. II, J. Functional Analysis 21 (1976), no. 2, 203–208. MR 0420287, DOI 10.1016/0022-1236(76)90078-1
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 61 (1976), 310-314
- MSC: Primary 46L05
- DOI: https://doi.org/10.1090/S0002-9939-1976-0428051-8
- MathSciNet review: 0428051