Structure theorem for $A$-compact operators
HTML articles powered by AMS MathViewer
- by G. D. Lakhani
- Proc. Amer. Math. Soc. 61 (1976), 305-309
- DOI: https://doi.org/10.1090/S0002-9939-1976-0428087-7
- PDF | Request permission
Abstract:
A contraction $T$ defined on a complex Hilbert space is called $A$-compact if there exists a nonzero function $f$ analytic in the open unit disc and continuous on the closed disc such that $f(T)$ is a compact operator. In this paper, the factorization of $f$ is used to obtain a structure theorem which describes the spectrum of $T$.References
- William B. Arveson and Jacob Feldman, A note on invariant subspaces, Michigan Math. J. 15 (1968), 61â64. MR 223922
- P. R. Chernoff and J. Feldman, Invariant subspaces for analytically compact operators, Michigan Math. J. 17 (1970), 23â27. MR 259647, DOI 10.1307/mmj/1029000371
- C. FoiaĆ and W. Mlak, The extended spectrum of completely non-unitary contractions and the spectral mapping theorem, Studia Math. 26 (1966), 239â245. MR 200722, DOI 10.4064/sm-26-3-239-245
- Frank Gilfeather, The structure and asymptotic behavior of polynomially compact operators, Proc. Amer. Math. Soc. 25 (1970), 127â134. MR 257791, DOI 10.1090/S0002-9939-1970-0257791-3
- Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0133008 B. Sz.-Nagy and C. FoiaĆ, Analyse harmonique des opĂ©rateurs de lâespace de Hilbert, Masson, Paris; Akad. KiadĂł, Budapest, 1967; English rev. transl., North-Holland, Amsterdam; American Elsevier, New York; Akad. KiadĂł, Budapest, 1970. MR 37 #778; 43 #947.
- FrĂ©dĂ©ric Riesz and BĂ©la Sz.-Nagy, Leçons dâanalyse fonctionnelle, AkadĂ©miai KiadĂł, Budapest, 1953 (French). 2Ăšme Ă©d. MR 0056821
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 61 (1976), 305-309
- MSC: Primary 47A60; Secondary 47B05
- DOI: https://doi.org/10.1090/S0002-9939-1976-0428087-7
- MathSciNet review: 0428087