Decomposing algebraic vector bundles on the projective line
HTML articles powered by AMS MathViewer
- by Charles C. Hanna
- Proc. Amer. Math. Soc. 61 (1976), 196-200
- DOI: https://doi.org/10.1090/S0002-9939-1976-0429898-4
- PDF | Request permission
Abstract:
$\mathcal {V}(R)$ denotes the category of algebraic vector bundles on ${\mathbf {P}}_R^1,\;R$ a commutative, noetherian ring. If $K$ is a field, it is known that any $\mathcal {F} \in \mathcal {V}(K)$ is isomorphic to a (unique) direct sum of line bundles. If $\mathfrak {p} \in \operatorname {Spec} R$ and $K(\mathfrak {p})$ is the quotient field of $R/\mathfrak {p}$, any $\mathcal {F} \in \mathcal {V}(R)$ induces a bundle in $\mathcal {V}(K(\mathfrak {p}))$, and so a decomposition into line bundles. If the decomposition is the same for each $\mathfrak {p},\;\mathcal {F}$ is said to be uniform. It is shown that if $R$ is reduced, uniform vector bundles on ${\mathbf {P}}_R^1$ are sums of tensor products of (pullbacks of) bundles on $\operatorname {Spec} R$ with line bundles on ${\mathbf {P}}_R^1$.References
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- George D. Birkhoff, Singular points of ordinary linear differential equations, Trans. Amer. Math. Soc. 10 (1909), no. 4, 436–470. MR 1500848, DOI 10.1090/S0002-9947-1909-1500848-5
- A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math. 79 (1957), 121–138 (French). MR 87176, DOI 10.2307/2372388
- G. Horrocks, Projective modules over an extension of a local ring, Proc. London Math. Soc. (3) 14 (1964), 714–718. MR 169878, DOI 10.1112/plms/s3-14.4.714 M. P. Murthy, Projective modules, Lecture Notes, Univ. of Chicago (to appear).
- Daniel Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976), 167–171. MR 427303, DOI 10.1007/BF01390008
- Leslie G. Roberts, Indecomposable vector bundles on the projective line, Canadian J. Math. 24 (1972), 149–154. MR 297776, DOI 10.4153/CJM-1972-013-9
- Jean-Pierre Serre, Faisceaux algébriques cohérents, Ann. of Math. (2) 61 (1955), 197–278 (French). MR 68874, DOI 10.2307/1969915
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 61 (1976), 196-200
- MSC: Primary 14F05
- DOI: https://doi.org/10.1090/S0002-9939-1976-0429898-4
- MathSciNet review: 0429898