## Fourier transforms with only real zeros

HTML articles powered by AMS MathViewer

- by Charles M. Newman PDF
- Proc. Amer. Math. Soc.
**61**(1976), 245-251 Request permission

## Abstract:

The class of even, nonnegative, finite measures $\rho$ on the real line such that for any $b > 0$ the Fourier transform of $\exp ( - b{t^2})d\rho (t)$ has only real zeros is completely determined. This result is then applied to the Riemann hypothesis.## References

- N. G. de Bruijn,
*The roots of trigonometric integrals*, Duke Math. J.**17**(1950), 197–226. MR**37351** - Morris Marden,
*The Geometry of the Zeros of a Polynomial in a Complex Variable*, Mathematical Surveys, No. 3, American Mathematical Society, New York, N. Y., 1949. MR**0031114** - Charles M. Newman,
*Zeros of the partition function for generalized Ising systems*, Comm. Pure Appl. Math.**27**(1974), 143–159. MR**484184**, DOI 10.1002/cpa.3160270203 - Charles M. Newman,
*Inequalities for Ising models and field theories which obey the Lee-Yang theorem*, Comm. Math. Phys.**41**(1975), 1–9. MR**376061** - Charles M. Newman,
*Classifying general Ising models*, Les méthodes mathématiques de la théorie quantique des champs (Colloq. Internat. CNRS, No. 248, Marseille, 1975) Éditions Centre Nat. Recherche Sci., Paris, 1976, pp. 273–288 (English, with French summary). MR**0479247** - George Pólya,
*Collected papers*, Mathematicians of Our Time, Vol. 7, MIT Press, Cambridge, Mass.-London, 1974. Vol. 1: Singularities of analytic functions; Edited by R. P. Boas. MR**0505093** - Barry Simon and Robert B. Griffiths,
*The $(\phi ^{4})_{2}$ field theory as a classical Ising model*, Comm. Math. Phys.**33**(1973), 145–164. MR**428998** - E. C. Titchmarsh,
*The Theory of the Riemann Zeta-Function*, Oxford, at the Clarendon Press, 1951. MR**0046485**

## Additional Information

- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**61**(1976), 245-251 - MSC: Primary 10H05; Secondary 42A68
- DOI: https://doi.org/10.1090/S0002-9939-1976-0434982-5
- MathSciNet review: 0434982