Approximation by Invertibles

Michael Gartenberg

Abstract. The uniform closure of the set of invertibles of certain C^*-algebras is characterized. It is shown that indices on $\mathcal{B}(C(A))$, where A is a closed annulus in the plane and on $M_2^2\times S^1$ have continuous extensions to elements which are not invertible.

1. Introduction. It is well known that the set of invertible elements \mathcal{G} in a Banach algebra is open in the algebra. Feldman and Kadison have studied the uniform closure of \mathcal{G} where the algebra in question is $\mathcal{B}(\mathcal{H})$ [6]. Concerning C^*-algebras, in general, less is known, and we discuss this problem for certain function algebras.

A related problem is one which can be phrased very generally. Let \mathcal{A} be a C^*-algebra with identity, and let \mathcal{G} denote the set of invertibles in \mathcal{A}. A continuous homomorphism ι of \mathcal{G} into some discrete group \mathcal{D} is called an index on \mathcal{G}. If $r \in \mathcal{D}$, we write $\mathcal{G}_r = \iota^{-1}(r)$. For any given index we can define the set

$$\mathcal{K} = \left\{ x \in \mathcal{G} : \text{there exists an } \varepsilon > 0 \text{ and a fixed } r(x) \in \mathcal{D} : \mathcal{N}_{r(x)}(x) \cap \mathcal{G} \subset \mathcal{G}_r(x) \right\},$$

and for $r(x) \in \mathcal{D}$ we write $\mathcal{K}_r = \{ x \in \mathcal{K} : r(x) = r \}$.

We consider the problem of determining \mathcal{K} for certain C^*-algebras whose elements are symbols of operators on a Hilbert space. Coburn and Lebow have considered the case of the usual index defined on the invertibles of the Calkin algebra $\mathcal{B}(\mathcal{H})/\mathcal{K}$ where \mathcal{H} is a separable Hilbert space and \mathcal{K} is the set of compact operators on \mathcal{H}. Here $\mathcal{K} = \mathcal{G}$ [3].

The following is an immediate result of the definition.

Proposition 1. (i) If ι' is defined on \mathcal{K} by $\iota'(x) = r(x)$, then $\iota' : \mathcal{K} \to \mathcal{D}$ is continuous, and ι' restricted to \mathcal{G} equals ι. Each \mathcal{K}_r is open in \mathcal{K}.

(ii) \mathcal{K} is not necessarily closed under products, but if $x \in \mathcal{K}_r$, $y \in \mathcal{K}_s$ and $xy \in \mathcal{K}$, then $xy \in \mathcal{K}_{r+s}$.

(iii) $\mathcal{G}_r \mathcal{G}_s \subset \mathcal{K}_{r+s}$.

(iv) $\mathcal{G}_r(\mathcal{K}_s - \mathcal{G}_s) \subset \mathcal{K}_{r+s} - \mathcal{G}_{r+s}$.

2. The algebra $\mathcal{A} = C(T)$. Let $\mathcal{A} = C(T)$ be the algebra of all complex-valued continuous functions on the unit circle T. A function $f \in \mathcal{A}$ is invertible if and only if f does not vanish on T. The winding number of the
curve traced out by \(f \in \mathcal{S}(\mathbb{C}) \) with respect to origin, denoted by \(w.n.(f) \) determines an index on \(\mathcal{S} \) [2].

Theorem 2. Let \(i(f) = w.n.(f) \) be an index on \(\mathcal{S}(\mathbb{C}) \), and let \(\mathcal{S}_n(\mathbb{C}) = \{ f \in \mathcal{S}(\mathbb{C}) : i(f) = n \} \). Then for any \(f \in \mathcal{S}_1 \), \(f \in \bigcap_n \mathcal{S}_n(\mathbb{C}) \), so that \(\mathcal{K} = \mathcal{S} \).

Proof. Let \(\epsilon > 0 \) be given, and set \(S_\epsilon = \{ z \in T : |f(z)| < \epsilon \} \). Consider the function \(\phi \in C(T) \) defined as follows. For \(z \in T - S_\epsilon \), \(\phi(z) = f(z) \); for \(z = e^{i\omega} \in I_1 \), where \(I_1 = \{ e^{i\omega} : \omega_0 < \omega < \omega_1 \} \) is an arbitrary interval of \(S_\epsilon \) for which \(f(e^{i\omega_0}) = ee^{i\omega_0} \) and \(f(e^{i\theta_1}) = ee^{i\theta_1} \), let

\[
\phi(e^{i\omega}) = \epsilon \exp \left(-i \left(\frac{\omega_1 - \omega_0}{\theta_1 - \theta_0} \right) \right) \left(\omega - \omega_0 \right).
\]

The function \(\phi \in \mathcal{S}(\mathbb{C}) \), and \(\| f - \phi \| < 2\epsilon \) on \(T \). Since \(\epsilon > 0 \) is arbitrary, \(f \in \mathcal{S}(\mathbb{C}) \).

The function \(\phi \) can have arbitrary index. For if \(i(\phi) = n \) and \(k \) is any integer other than \(n \), the function \(\phi' \in \mathcal{S}(\mathbb{C}) \) defined by \(\phi'(z) = f(z) \) for \(z \in T - I_1 \), where \(I_1 = \{ e^{i\omega} : \omega_0 < \omega < \omega_1 \} \) is some fixed interval of \(S_\epsilon \), and by

\[
\phi'(z) = \begin{cases}
\epsilon \exp \left(-i \left(\frac{\omega_1 - \omega_0}{\theta_1 - \theta_0} \right) \right) \left(\omega - \omega_0 \right), \\
\epsilon \exp i\omega_1 \exp \left(-4\pi i(k - n) \right) \left(\omega - \left(\frac{\omega_0 - \omega_1}{2} \right) \right),
\end{cases}
\]

has index \(k \), and \(\| f - \phi' \| < 2\epsilon \) on \(T \). Since \(\epsilon > 0 \) and \(k \) are arbitrary, we conclude that \(f \in \bigcap_n \mathcal{S}_n(\mathbb{C}) \).

Since every neighborhood of \(f \) contains invertibles of all indices, \(\mathcal{K} = \mathcal{S} \).

We next recall some basic notions of Fredholm theory. An operator \(A \) in \(\mathcal{B}(\mathcal{K}) \) is said to be Fredholm if the range of \(A \) is closed and \(\dim \ker A + \dim \ker A^* \) is finite. Atkinson has shown that these conditions are equivalent to \(\pi(A) \) being invertible in the algebra \(\mathcal{B}(\mathcal{K})/\mathcal{K} \) where \(\pi \) is the quotient map [1]. The analytic index \(i_\mathcal{B}(A) \) defined on the set of Fredholm operators \(\mathcal{S} \) by \(i_\mathcal{B}(A) = \dim \ker A - \dim \ker A^* \) is a homomorphism of \(\mathcal{S} \) onto the integers.

Now for \(\phi \in C(T) \), the Toeplitz operator \(T_\phi \) is defined as follows: Let \(L^2(T) \) be the space of Lebesgue square-integrable functions on \(T \) with the orthonormal basis \(\{ e^{inx}, n \in \mathbb{Z} \} \). The subspace spanned by those \(e^{inx} \) for which \(n \geq 0 \) is denoted by \(H^2(T) \). The operator \(T_\phi \) is defined on \(H^2(T) \) by \(T_\phi f = P(\phi f) \) where \(P \) is the orthogonal projection from \(L^2 \) onto \(H^2 \).

The Banach algebra \(\mathcal{B} \) generated by \(T_\phi \) has been studied by Coburn [2]. He has shown that \(\mathcal{B} = \{ T_\phi + K : \phi \in C(T), K \text{ compact} \} \) and that the \(C^* \)-algebra \(\mathcal{B}/\mathcal{K} \) is isometrically \(*\)-isomorphic to \(C(T) \). It follows that \(T_\phi \) is
a Fredholm operator if and only if ϕ does not vanish on T and that $i_{an}(T_\phi)$ equals the negative of $\text{w.n.}(\phi)$ with respect to the origin. Lastly, let the map $\rho: \mathcal{B} \to C(T)$ be given by $\rho(T_\phi + K) = \phi$. It has been shown that the natural cross section s of ρ is continuous. Thus for any component \mathcal{C} of $\mathcal{B}(C(T))$, $s(\mathcal{C}) = s(\mathcal{C})$ [7].

These remarks together with Theorem 2 yield the following analogue of Theorem 2 for the set of Fredholm operators \mathcal{F} in \mathcal{B}.

Corollary 3. There is no possibility of continuously extending the analytic index beyond \mathcal{F}.

Let Ω be a compact set in the plane with interior whose boundary consists of finitely many Jordan curves. If i is the index defined on $\mathcal{F}(C(\Omega))$ by $i(f) = 0$, then $\mathcal{K} = \mathcal{F}$ is always larger than \mathcal{F}. The problem is to determine \mathcal{F}. We limit ourselves to the following

Theorem 4. If Ω is a set of the type described, then $\mathcal{F} \subset \mathcal{K} \subset C(\Omega)$.

Proof. Let a be an interior point of Ω. The function $f(z) = z - a$ in $C(\Omega)$ has nonzero winding number along closed curves in Ω about the point a. Hence f cannot be uniformly approximated by nonvanishing functions of $C(\Omega)$.

On the other hand, if $f \in C(\Omega)$ vanishes only on $\partial \Omega$, then $f \in \mathcal{F}$. For any component \mathcal{C} of Ω with interior and any $\epsilon > 0$, let $I = \{ z \in \partial \mathcal{C} : |f(z)| < \epsilon/2 \}$. Then $I = \bigcup_i I_i$ is a countable union of disjoint smooth curves. There exist smooth arcs γ_i in \mathcal{C} having as endpoints the endpoints of I_i such that on the region R_i bounded by $\overline{I_i}$ and γ_i, $|f(z)| < \epsilon$. On each R_i there is a continuous function f_i satisfying $f_i|_{\gamma_i} = f|_{\gamma_i}$ with the range of f_i on all of R_i equal to the range of f on γ_i. The function f' defined by

$$f'(z) = \begin{cases} f(z), & z \in \mathcal{C} - \bigcup_i R_i, \\ f_i(z), & z \in R_i, \end{cases}$$

is continuous and nonvanishing on \mathcal{C}, and $\|f - f'\| < 2\epsilon$ on \mathcal{C}. Since \mathcal{C} and $\epsilon > 0$ are arbitrary, $f \in \mathcal{F}$.

3. **The algebra $\mathcal{C} = C(A)$.** We now describe an algebra for which there exists a nontrivial index that can be continuously extended beyond $\mathcal{F}(\mathcal{A})$. Let A be the closed annulus in the plane centered at the origin with radii $r = 1/2$ and $r = 1$. A function $f \in \mathcal{A} = C(A)$ is invertible if and only if f does not vanish on A, and the winding number traced out by f with respect to the origin along the curve $r = 1/4$ determines an index on $\mathcal{F}(\mathcal{A})$.

Theorem 5. For the index described, $\mathcal{F} \subset \mathcal{K} \subset \mathcal{F} \subset C(A)$.

Proof. If $f \in C(A)$ vanishes only on ∂A, then by Theorem 4, $f \in \mathcal{F}(\mathcal{A})$. The winding number of f along $r = 3/4$ is some integer, say n. It follows from the continuity of the winding number that if $g \in \mathcal{F}(\mathcal{A})$ satisfies $\|f - g\| < \epsilon$ for $\epsilon > 0$ sufficiently small, then $\text{w.n.}(g)$ along $r = 3/4$ is also n. Hence, $f \in (\mathcal{K}_n - \mathcal{F}_n)$.
On the other hand, let $g \in C(A)$ be defined by $g(re^{i\theta}) = g(e^{i\theta})$, $\frac{1}{2} < r < 1$; $g(re^{i\theta'}) = 0$ for some fixed θ', and $g(re^{i\theta}) \neq 0$ for $\theta \neq \theta'$. It follows from Theorem 2 that $g \in \bigcap_n \mathcal{G}(n)$, so that $g \not\in \mathcal{H}$. Hence, $\mathcal{H} \subset \not\mathcal{G}$. Finally, it follows from Theorem 4 that if $h \in C(A)$ has an isolated zero at an interior point of A, then $h \not\in \not\mathcal{G}$.

The elements of $C(A)$ can be realized as symbols of operators on a Hilbert space. Because of this, we can characterize a distinguished class of non-Fredholm operators to which the analytic index can be continuously extended.

Let $\mathcal{H} = L^2(A, dA) \oplus H^2(\frac{1}{2}T, d\theta)$, where $L^2(A, dA)$ is the Hilbert space of all square-integrable functions on A with respect to area measure and $H^2(\frac{1}{2}T, d\theta)$ is the Hardy space of all square-integrable functions on $\frac{1}{2}T$ with respect to normalized Haar measure. For $\phi \in C(A)$, M_ϕ denotes the multiplication operator on $L^2(A, dA)$ induced by ϕ and T_ϕ denotes the Toeplitz operator on $H^2(\frac{1}{2}T, d\theta)$ induced by $\phi = \phi|_{\frac{1}{2}T}$. We shall denote by S_ϕ the operator $M_\phi \oplus T_\phi$ on \mathcal{H}.

Lemma 6. For any $\phi, \psi \in C(A)$ the following properties hold:

(i) $S_\phi^* = S_\phi$;
(ii) $S_\lambda \phi + \mu \psi = \lambda S_\phi + \mu S_\psi$ for any complex scalars λ and μ;
(iii) $\|S_\phi\| = \|\pi(S_\phi)\| = \|\phi\|$.

Proof. (i) and (ii) are direct computations; (iii) is a consequence of the Douglas generalization of the Berg-Weyl theorem [5].

Theorem 7. The set $\mathcal{A} = \{S_\phi + K, K \in \mathcal{H}(\mathcal{H})\}$ is a Banach algebra, and the representation of elements of \mathcal{A} as sums is unique.

Proof. It follows from the lemma that if the operators A and B are in \mathcal{A}, then so are $A + B$, $\lambda \cdot A$, and A^*. Since $T_\phi T_\psi - T_{\phi \psi}$ is a compact operator on $H^2(\frac{1}{2}T, d\theta)$ [2], $S_\phi S_\psi - S_{\phi \psi}$ is in $\mathcal{H}(\mathcal{H})$, and \mathcal{A} is closed under multiplication. It remains to be shown that the algebra \mathcal{A} is closed. By (iii) above, if a sequence $\{S_{\phi_n} + K_n\}$ is Cauchy, then so is $\{\phi_n\}$. But then $\phi_n \to \phi$ for some $\phi \in C(A)$. Again by (iii), $S_\phi \to S_\phi$ so that $K_n \to K$ for some $K \in \mathcal{H}(\mathcal{H})$, and \mathcal{A} is closed. Lastly, the norm equality $\|S_\phi + K\| = \|\phi\|$ implies that the representation is unique.

Corollary 8. The map $S_\phi + K \leftrightarrow \phi$ is an isometric $*$-isomorphism between $\mathcal{A} / \mathcal{H}$ and $C(A)$. The operator S_ϕ is Fredholm in \mathcal{A} if and only if ϕ does not vanish on A, and the analytic index on S_ϕ equals minus the winding number of ϕ along $r = \frac{1}{2}$ with respect to the origin.

Proof. The first remarks follow immediately from Proposition 6, Theorem 7, and Atkinson's characterization of Fredholm operators. Since $\text{ind } S_\phi = \text{ind } M_\phi + \text{ind } T_\phi = 0 + \text{w.n.}(\phi)$ [5], we have the index characterization of the corollary.

Corollary 9. The analytic index on the set of Fredholms $\not\mathcal{F} \subset \mathcal{H}$ can be continuously extended to those elements of $\mathcal{G} - \not\mathcal{G}$ whose symbols lies in \mathcal{H}.

Proof. This is an immediate consequence of Theorem 5 and the fact that the map $\phi \to S_\phi$ is continuous.
4. The algebra $\mathcal{B} = M_2^{S^2 \times S^1}$. We will consider S^2 as the one point compactification of the plane and S^1 the unit sphere $|z| = 1$. We shall study the C*-algebra $\mathcal{A} = M_2^{S^2 \times S^1}$ of 2×2 matrix-valued functions on $S^2 \times S^1$ in the matrix supremum norm. This algebra can be identified as the symbol space of the algebra \mathcal{B} of 2×2 systems of singular integral operators. We briefly describe this latter algebra and refer the reader to [4] for details.

Let $\mathcal{F}f$ denote the Fourier transform of the function $f(x) \in L^2(R^2)$. The algebra \mathcal{B} is generated by 2×2 systems of (a) the multiplication operators M_ϕ, $\phi \in C(S^2)$, (b) $\mathcal{F}^{-1}M_{k(x)}\mathcal{F}$ where $k(x) \in C(S^1)$ is homogeneous of degree zero, and (c) the ideal \mathcal{K} of compact operators on $L^2(R^2) \oplus L^2(R^2)$. The symbol map σ on \mathcal{B} given by

$$
\sigma(M_\phi) = \phi(x), \quad x \in S^2;
$$

$$
\sigma(\mathcal{F}^{-1}M_{k(x)}\mathcal{F}) = k(\theta), \quad \theta \in S^1;
$$

$$
\sigma(K) = 0, \quad K \text{ compact};
$$

can be extended to a *-homomorphism from all of \mathcal{B} onto $M_2^{S^2 \times S^1}$ and has a continuous cross section. An operator in \mathcal{B} is Fredholm if and only if its symbol has nonvanishing determinant on $S^2 \times S^1$, and two Fredholm operators are homotopic if and only if their symbols, considered as matrix functions from $S^2 \times S^1$ into GL_2, the general linear group of all 2×2 nonsingular matrices, are homotopic.

An index $i: \mathcal{B} = GL_2^{S^2 \times S^1} \to Z$ is determined as follows. If for $f \in \mathcal{B}$, we write $f = pu$, where p is positive and

$$
\mathcal{F} \mathcal{F}^{-1} = \left(\begin{array}{cc} u_1 & u_2 \\ u_3 & u_4 \end{array} \right) \in U_2^{S^2 \times S^1},
$$

the 2×2 unitary matrices in \mathcal{B}, then the map $\gamma(u) = (u_1, u_2)$ determines an element of $\pi_0(S^{3\mathbb{Z} \times S^1})$. Now $\pi_0(S^{3\mathbb{Z} \times S^1}) \cong Z$, and we define $i(f) = [\gamma \circ u] \in \pi_0(S^{3\mathbb{Z} \times S^1})$, where $[\gamma \circ u]$ denotes the class of $\gamma \circ u$ in $\pi_0(S^{3\mathbb{Z} \times S^1})$ [9].

We note that it is immaterial whether the “top” or “bottom” row map is used to define the index. For

$$
\left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array} \right) = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \left(\begin{array}{cc} \gamma & \delta \\ \alpha & \beta \end{array} \right),
$$

and $U = (0 \; 1)$ is unitary. If we write $U = e^{iH}$ for some Hermitian H, then $U_\epsilon = e^{i\epsilon H}$ is a homotopy between U and the identity.

Theorem 10. For the algebra $\mathcal{B} = M_2^{S^2 \times S^1}$, where $\mathcal{B} = GL_2^{S^2 \times S^1}$ and for the index i described above, $\mathcal{K} \neq \mathcal{B}$.

Proof. We shall describe a class of elements contained in $\mathcal{K} - \mathcal{B}$. Consider those elements in $M_2^{S^2 \times S^1}$ of the form

$$
h(x) = \left(\begin{array}{cc} \alpha(x) & \overline{\beta(x)} \\ \beta(x) & \overline{\tau(x)} \end{array} \right),
$$
where \(\alpha(x) > m > 0, \tau(x) > |\beta(x)| \) and \(m > 3\|\tau\|_\infty \). If \(\tau(x) = 0 \) on \(S^2 \times S^1 \), then \(h \not\in \mathcal{G} \). On the other hand, \(h(x) > 0 \) so that \(h \in \mathcal{G} \). Now if \(\|pu - h\| < \varepsilon \) for
\[
\begin{pmatrix} p_1 & \bar{p}_2 \\ p_2 & p_3 \end{pmatrix} \text{ positive}
\]
and
\[
\begin{pmatrix} u_1 \\ u_3 \end{pmatrix} = \begin{pmatrix} u_2 \\ u_4 \end{pmatrix} \text{ unitary,}
\]
then
\[
|p_3| < |p_3 - (\bar{\beta}u_1 + \tau u_3)| + |\beta| + |\tau| < \varepsilon + \|\tau\|_\infty.
\]
Hence,
\[
|au_2| < |(\bar{\beta} - \beta u_4) - au_2| + |p_3 - \bar{\beta} u_4| < 2\varepsilon + \|\tau\|_\infty.
\]
It follows that
\[
\|u_2\|_\infty \leq \|\alpha^{-1}\|_\infty \varepsilon + \|\alpha^{-1}\|_\infty \|\tau\|_\infty < (6\varepsilon + m)/3m.
\]
If \(\varepsilon > 0 \) is chosen so that \(\varepsilon < m/3 \), then \(\|u\|_\infty < 1 \). This implies that the range of \(\gamma \circ u^* \) is not all of \(S^3 \). Therefore, \(i(u^*) = -i(u) = [\gamma \circ u^*] = 0 \), since \(\gamma \) is a homeomorphism. Hence if \(\varepsilon < m/3 \), \(h \) is an element of \(\mathcal{K}_0 - \mathcal{G}_0 \).

It follows from Proposition 1 that \(\mathcal{K}_r - \mathcal{G}_r \) is nonempty for all \(r \).

Corollary 11. There exists a continuous extension of the analytic index on the set of Fredholm operators \(\mathcal{F} \) in \(\mathcal{G} \) to a class of operators in \(\mathcal{F} - \mathcal{G} \).

Proof. The analytic index \(i_{an} \) on \(\mathcal{F} \) is given by \(\sigma \circ i \), where \(\sigma \) is the symbol map and \(i \) is the topological index on \(GL_2^{S^2 \times S^1} \). Since \(\sigma \) has a continuous cross section, \(i_{an} \) can be continuously extended to those operators in \(\mathcal{F} - \mathcal{F} \) whose symbols lie in \(\mathcal{K} \).

References

Department of Mathematics, Bernard M. Baruch College, City University of New York, New York, New York 10010