WHEN MIDSETS ARE MANIFOLDS

L. D. LOVELAND

Abstract. The midset M of two disjoint closed subsets A and B of n-space E^n is defined as the set of all points of E^n having equal distances to both A and B. Such midsets are not always manifolds, but when either A or B is a convex set it follows that M is homeomorphic to an open subset of an $(n - 1)$-sphere S^{n-1}. Furthermore, in this situation M will be homeomorphic to S^{n-1} if and only if the convex set A is bounded and lies in the interior of the convex hull $C(B)$ of B. If A is a singleton set and r is the dimension of the smallest Euclidean flat P in E^n containing $A \cup B$, then $P \cap M$ is an $(r-1)$-sphere or an open $(r-1)$-cell depending upon whether or not A lies in the interior (relative to P) of $C(B)$. In either case $M = (P \cap M) \times E^{n-r}$. A manifold lying in a midset in E^3 is always tamely embedded, as are ε-boundaries of certain special subsets of E^n.

1. Introduction. The midset $M(A, B)$ of two sets A and B in a metric space (X, d) is defined to be $\{x \in X | d(x, A) = d(x, B)\}$ and is also known as the equidistant set [1], [14] or the bisector [3] of A and B. The midset of two singleton sets in the Euclidean plane E^2 is the perpendicular bisector of the segment joining the two sets, and the midset of a line and a singleton set not intersecting the line is a parabola. If A and B are disjoint continua (nondegenerate, compact, connected sets) in E^2, then $M(A, B)$ is always a 1-manifold [1]; however, the analogous statement for E^3 is false. For a counterexample, let A be the circle bounding the disk $D = \{(x, y, 0) | x^2 + y^2 < 1\}$ in E^3, and let B be the 2-sphere $\{p \in E^3 | d(p, D) = 1\}$ where d is the usual metric for E^3. In this example $M(A, B)$ is a "pinched" 2-sphere. We show that $M(A, B)$ is an $(n-1)$-manifold whenever A and B are disjoint closed subsets of E^n and A is a convex set. In this setting $M(A, B)$ is homeomorphic to an open subset of an $(n-1)$-sphere, and $M(A, B)$ is a topological $(n-1)$-sphere if and only if A is bounded and lies in the interior of the convex hull of B (see §3). A complete classification of the midsets realized when one of A and B is a singleton set is presented in Theorem 3.3.

One can easily prove that $M(A, B)$ is closed and that it separates A from B in X. Consequently $M(A, B)$ has dimension $n - 1$ when $X = E^n$ [12, p. 48]. Wilker [14] proved that $M(A, B)$ is connected when A and B are connected subsets of E^n. Although midsets in E^n are not always manifolds, we show in
§4 that every 2-manifold lying in the midset of two disjoint closed subsets of E^3 must be tamely embedded in E^3 (Theorem 4.1).

The ε-boundary $\partial_\varepsilon(A)$ of a subset A in E^n, defined as \{ $x \in E^n | d(x, A) = \varepsilon$ \} when ε is a positive real number, seems somewhat related to the midset concept. Ferry [9, Theorem 3.1] proved that $\partial_\varepsilon(A)$ is a 2-manifold for almost all ε if $A \subset E^3$, and he also proved a “collaring” theorem [9, Theorem 4.1].

Prior work on ε-boundaries was done by Brown [4], Gariepy and Pepe [11], and Weill [13]. Weill [13, p. 248] asked if a 2-sphere in E^3 is tamely embedded when it is realized as the ε-boundary of a compact set $A(\varepsilon > 0)$. In the special case where A is confined to one complementary domain of S, Weill observed that S is tame from its other complementary domain. We provide an affirmative answer to his question in the other case; that is, S is tame if it is the ε-boundary of a set $A(\varepsilon > 0)$ that intersects both components of $E^3 - S$. In fact this result is valid in E^n as long as $n \neq 4$ (Theorem 5.1).

2. Definitions and lemmas. As mentioned before, the midset of two sets A and B is denoted by $M(A, B)$. When no confusion results we often denote $M(A, B)$ by M. It is sometimes convenient to use Wilker's [14] notation \{ $A < B$ \} for the set of points in E^n closer to A than to B and to use \{ $A \leq B$ \} to mean \{ $A < B$ \} \cup $M(A, B)$. A ray is a closed, geometric half-line in E^n and is denoted sometimes by $[a, \infty)$ when a is its first point. If R is a ray we let $H(R)$ denote the open half-space in E^n which has R as its inward pointing normal and which has the first point of R on its boundary. For example if R is the nonnegative z-axis in E^3, then $H(R) = \{(x, y, z) | z > 0\}$. The boundary of $H(R)$ is an $(n - 1)$-dimensional flat. More generally a flat of dimension r is a subspace of E^n congruent to E^r.

A foot of a point p on a closed set A in E^n is a point $\tilde{\partial}_p$ such that \(d(p, A) = d(p, \tilde{\partial}_p)\). The foot $\tilde{\partial}_p$ of a point p on a convex closed set A in E^n is unique. A subset A of E^n is convex if it contains all straightline segments whose endpoints lie in A. The convex hull of a set B in E^n is the intersection of all convex sets containing B and is denoted by $C(B)$.

In order to show that $M(A, B)$ is homeomorphic to an open subset of an $(n - 1)$-sphere when A is convex, we use the fact that $\partial_\varepsilon(A)$ is homeomorphic to an open subset of an $(n - 1)$-sphere (Lemma 2.1), and then we identify a homeomorphism between $M(A, B)$ and an open subset of $\partial_\varepsilon(A)$ (see Theorem 3.1).

Lemma 2.1. Let A be a closed, convex subset of E^n and let $\varepsilon > 0$. Then $\partial_\varepsilon(A)$ is homeomorphic to an open subset of an $(n - 1)$-sphere. Furthermore $\partial_\varepsilon(A)$ is a topological $(n - 1)$-sphere if and only if A is bounded.

Proof. Let S be the unit $(n - 1)$-sphere centered at a point $p \in A$. For each $x \in S$, let R_x be the ray $[p, \infty)$ through x. Such a ray intersects $\partial_\varepsilon(A)$ in at most one point as we now show. Suppose $y \in R_x \cap \partial_\varepsilon(A)$, let $\tilde{\partial}_y$ be the foot of y on A, let $R(\tilde{\partial}_y)$, be the ray $[\tilde{\partial}_y, \infty)$ through y, let H be the open
half-space $H(R(\partial_y))$, and let $K = E^n - H$. Since A is convex, $A \cap H = \emptyset$. Thus $A \subset K$ and $y \in H$. Since R_x is not parallel to the boundary flat of H it is clear that y is the only point of R_x at a distance ε from K. Because $A \subset K$ this means $R_x \cap \partial_x(A) = y$.

Let $D = \{x \in S | R_x \cap \partial_x(A) \neq \emptyset\}$, and define $f: D \to \partial_x(A)$ by letting $f(x)$ be the unique point of $R_x \cap \partial_x(A)$. Then f is injective and the continuity of f and f^{-1} is easily checked.

To show D is open let $x \in D$, and let $r: E^n - \{p\} \to S$ be the projection along rays emanating from p. The open ball B of radius ε and centered at $f(x)$ cannot intersect A, and we now show that $r(B)$, which contains x, lies in D. Let $y \in r(B)$. Since A is convex and $B \cap A = \emptyset$ there must exist a subray $[y', \infty)$ of R_y not intersecting A. From the conical structure of $r^{-1}(r(B))$ it is clear that a point y'' of $[y', \infty)$ exists such that the closed ε-ball B' centered at y'' lies in $r^{-1}(r(B))$. Then $B' \cap A = \emptyset$ and $d(y'', A) > \varepsilon$. Thus R_y intersects $\partial_x(A)$ and $y \in D$. Since $r(B) \subset D$, it follows that D is open.

If A is bounded, then every ray R_x must intersect $\partial_x(A)$; so f is surjective and $\partial_x(A)$ is homeomorphic to the sphere S. On the other hand, suppose $\partial_x(A)$ is an $(n-1)$-sphere. Then A lies in the bounded component of $E^n - \partial_x(A)$, and A is bounded.

Lemma 2.2. Let A and B be disjoint closed sets in E^n, and let R be a ray $[a, \infty)$ with $a \in A$. If $H(R) \cap B = \emptyset$, then $R \cap M(A, B) = \emptyset$.

Proof. The hypothesis that $H(R) \cap B = \emptyset$ insures that for each $p \in R - \{a\}$, $d(p, B) > d(p, a) > d(p, A)$. Thus $R \subset \{A < B\}$.

Lemma 2.3. Let A and B be disjoint closed subsets of E^n, and let R be a ray $[a, \infty)$ with $a \in A$ such that $H(R) \cap A = \emptyset$. Then $H(R) \cap B \neq \emptyset$ if and only if $R \cap M(A, B) \neq \emptyset$.

Proof. First we assume $R \cap M \neq \emptyset$. From the contrapositive of Lemma 2.2 it follows that $H(R) \cap B \neq \emptyset$. In the other direction it is convenient to define the continuous function g taking R to the real line by letting $g(t) = d(A, t) - d(t, B)$.

The hypothesis that $H(R) \cap A = \emptyset$ means $g(t) = d(a, t) - d(t, B)$, and $H(R) \cap B \neq \emptyset$ implies that, for t sufficiently far from a, g is positive. Since $g(a) < 0$, we know $g(m) = 0$ for some $m \in R$. Then $m \in R \cap M$.

Lemma 2.4. Let A and B be disjoint closed subsets of E^n, and let R be a ray $[a, \infty)$ with $a \in A$ such that $H(R) \cap A = \emptyset$. If $R \cap M(A, B) \neq \emptyset$, then R intersects $M(A, B)$ at a single point p. Furthermore $[a, p) \subset \{A < B\}$ and $(p, \infty) \subset \{B < A\}$.

Proof. Let p be a point of $R \cap M$, and let $q \in R$ such that $a < q < p$. Since $d(p, a) = d(p, B)$, the ball $B(p, d(p, a))$ does not intersect B. However the closure of $B(q, d(q, a))$ lies in $\{a\} \cup B(p, d(p, a))$, and consequently it cannot intersect B. Thus $d(q, B) > d(q, a)$ and $q \in \{A < B\}$.
Similarly one can prove \(r \in \{ B < A \} \) if \(r \in R \) and \(a < p < r \).

3. Midsets are manifolds when one set is convex. In this section \(A \) and \(B \) are closed subsets of \(E^n \) and \(A \) is convex. We show that the midset \(M(A, B) \) is an \((n - 1)\)-manifold. The strategy is to construct a homeomorphism \(h \) taking \(M(A, B) \) onto an open subset of \(\partial_e(A) \) (Theorem 3.1), and then use Lemma 2.1 to conclude that \(M \) is homeomorphic to an open subset of an \((n - 1)\)-sphere. Theorem 3.2 summarizes this result and gives necessary and sufficient conditions for \(M \) to be an \((n - 1)\)-sphere.

In the special case where \(A \) is a singleton set we give an inductive classification of those manifolds which are midsets (Theorem 3.3). For example if \(A \) is a singleton and \(B \) has interior points, then \(M(A, B) \) is either an \((n - 1)\)-sphere or an open \((n - 1)\)-cell depending upon whether or not \(A \) belongs to the interior of convex hull of \(B \). A complete list of the topological types of manifolds realized as midsets when \(A \) is a singleton set and \(n = 3 \) is given in Corollary 3.2.

Theorem 3.1. If \(A \) and \(B \) are disjoint closed subsets of \(E^n \), \(A \) is convex, and \(\varepsilon > 0 \), then \(M(A, B) \) is homeomorphic to an open subset of \(\partial_e(A) \).

Proof. Let \(M = M(A, B) \), and for each point \(p \in M \) let \(\varphi_p \) be the unique foot of \(p \) on \(A \). The ray \(R(\varphi_p) \) from \(\varphi_p \) through \(p \) intersects \(\partial_e(A) \) at a unique point \(h(p) \). We now show the function \(h: M \rightarrow \partial_e(A) \) is a homeomorphism.

Suppose \(p \) and \(q \) are points of \(M \) such that \(h(p) = h(q) \). Since \(B(h(p), \varepsilon) \cap A = \emptyset \) and both \(\varphi_p \) and \(\varphi_q \) lie in the boundary of \(B(h(p), \varepsilon) \), it follows from the convexity of \(A \) that \(\varphi_p = \varphi_q \). From Lemma 2.4 we see that \(p = q \), and the injectivity of \(h \) follows. If \(\{ p_i \} \) is a sequence of points of \(M \) converging to \(p \) in \(M \), then it is clear that \(\{ \varphi_{p_i} \} \) converges to \(\varphi_p \) in \(A \). Consequently \(\{ h(p_i) \} \) converges to \(h(p) \), and \(h \) is seen to be continuous. To check the continuity of \(h^{-1} \), let \(\{ h(p_i) \} \) be a sequence converging to \(h(p) \) in \(h(M) \). Since \(d(h(p_i), \varphi_{p_i}) = \varepsilon \), for each \(i \), it is clear that \(\{ \varphi_{p_i} \} \) converges to \(\varphi_p \). Consequently every limit point of \(\{ p_i \} \) lies in the ray \(R(\varphi_p) \). But from Lemma 2.4, \(R(\varphi_p) \cap M = \{ p \} \). Thus \(\{ p_i \} \) converges to \(p \), as desired.

Suppose \(h(M) \) is not open in \(\partial_e(A) \). Then there is a sequence \(\{ x_i \} \) of points of \(\partial_e(A) - h(M) \) converging to a point \(h(p) \) of \(h(M) \). For each \(i \) let \(\varphi_{x_i} \) be the unique foot of \(x_i \) on \(A \), and let \(R_i \) be the ray \([\varphi_{x_i}, \infty) \) through \(x_i \). Since \(R_i \cap M = \emptyset \), we see that \(R_i \subset \{ A < B \} \) for each \(i \). But \(\{ R_i \} \) converges to \(R(\varphi_p) \), so \(R(\varphi_p) \subset \{ A < B \} \), contradicting Lemma 2.4. Thus \(h(M) \) is an open subset of \(\partial_e(A) \).

Theorem 3.2. Let \(A \) and \(B \) be disjoint closed subsets of \(E^n \) with \(A \) convex. Then \(M(A, B) \) is homeomorphic to an open subset of an \((n - 1)\)-sphere, and \(M(A, B) \) is a topological \((n - 1)\)-sphere if and only if \(A \) is bounded and lies in \(\text{Int} \ C(B) \).
Proof. Let \(h : M(A, B) \rightarrow \partial_x(A) \) be the homeomorphism defined in the proof of Theorem 3.1. From Lemma 2.1 it follows that \(h \) takes \(M \) onto an open subset of the \((n - 1)\)-sphere \(\partial_x(A) \). To establish the necessary and sufficient condition for \(M \) to be an \((n - 1)\)-sphere, let us first assume \(M \) is such a sphere. Of course it follows that \(\partial_x(A) \) is an \((n - 1)\)-sphere, and from Lemma 2.1, \(A \) must be bounded. Suppose \(A \notin \text{Int} \ C(B) \). Then a ray \(R \) emanating from a point \(a' \in A \) exists such that \(H(R) \cap B = \emptyset \). Since \(A \) is compact, \(R \) may be chosen so that \(H(R) \cap A = \emptyset \). Then it follows from Lemma 2.3 that \(R \cap M = \emptyset \). But this is a contradiction since \(R \) must intersect \(\partial_x(A) \) at some point \(h(p) \) and the definition of \(h \) requires that \(R \) intersect \(M \) at some point \(h(p) \). Thus \(A \subset \text{Int} \ C(B) \).

Now we assume \(A \) is a bounded subset of \(\text{Int} \ C(B) \). From Lemma 2.1 \(\partial_x(A) \) is an \((n - 1)\)-sphere, so it suffices to prove \(h \) surjective. Let \(x \in \partial_x(A) \), let \(\partial_x \) be the unique foot of \(x \) on \(A \), and let \(R \) be the ray \([a_x, \infty) \) through \(x \). Then \(H(R) \cap B \neq \emptyset \) since \(A \subset \text{Int} \ C(B) \). Since \(H(R) \cap A = \emptyset \) it follows from Lemma 2.4 that \(R \cap A \) contains a point \(\beta \). Then, by the definition of \(h \), \(h(\beta) = x \). Since \(h \) is surjective, \(M \) is an \((n - 1)\)-sphere.

Corollary 3.1. Let \(A \) and \(B \) be disjoint subsets of \(E^n \) with \(A \) convex, and let \(P \) be the flat of least dimension containing \(A \cup B \). If \(P \) has dimension \(r \), then \(P \cap M(A, B) \) is an \((r - 1)\)-manifold \(K \) homeomorphic to an open subset of an \((r - 1)\)-sphere and \(M(A, B) \) is homeomorphic to \(K \times E^{n-r} \).

Theorem 3.3. Let \(A \) and \(B \) be disjoint closed subsets of \(E^n \) where \(A \) is the singleton set \(\{a\} \), let \(P \) be the flat of least dimension containing \(\{a\} \cup B \), and let \(\text{Int}_p C(B) \) denote the interior of the convex hull of \(B \) relative to the space \(P \). If \(P \) has dimension \(r \), then

(i) \(P \cap M(A, B) \) is an \((r - 1)\)-sphere if and only if \(a \in \text{Int}_p C(B) \),
(ii) \(P \cap M(A, B) \) is an open \((r - 1)\)-cell if and only if \(a \notin \text{Int}_p C(B) \), and
(iii) in either case, \(M(A, B) = (P \cap M(A, B)) \times E^{n-r} \).

Proof. For convenience in the notation we let \(M \) denote \(P \cap M(A, B) \). Since \(A \) is convex, conclusion (i) and one direction of conclusion (ii) follow from Theorem 3.2. Since conclusion (iii) is clear, it remains to show that \(M \) is an open \((r - 1)\)-cell if \(a \notin \text{Int}_p C(B) \).

Let \(S \) be an \((r - 1)\)-sphere in \(P \) centered at \(a \), and let \(\pi : M \rightarrow S \) be the projection along rays emanating from \(a \). Since \(S \) is an \(\varepsilon \)-boundary of \(A \), previously given proofs show that \(\pi \) is a homeomorphism of \(M \) onto an open \((r - 1)\)-manifold subset of \(S \). The complement \(X \) of \(\pi(M) \) in \(S \) is not empty since \(a \notin \text{Int}_p C(B) \). From Lemma 2.3 and the fact that \(P \) is the minimal flat containing \(\{a\} \cup b \), we see that the closed set \(X \) contains no antipodal points of \(S \). From this fact and Lemma 2.3 it follows that \(X \) is 'convex' in the sense that it contains, with each pair of its points, the smaller arc of the great circle determined by them. These two facts imply that \(X \) is cellular (using the technique in the proof of Lemma 2.1, one can construct a sequence \(\{C_i\} \) of
(r - 1)-cells in S such that \(X = \cap_{i=1}^{n} C_i\) and, for each \(i\), \(X \subset \text{Int} C_i \subset C_i \subset \text{Int} C_{i+1}\); consequently \(S - X\) is homeomorphic to an open \((r - 1)\)-cell.

Corollary 3.2. If A and B are disjoint closed subsets of \(E^3\) and A is a singleton set, then \(M(A, B)\) is homeomorphic to either a 2-sphere, an open 2-cell, an open annulus, or to the union of two disjoint open 2-cells.

Corollary 3.3. If A and B are disjoint closed subsets of \(E^n\) and A is convex, then the following statements are equivalent:

1. \(M(A, B)\) is an \((n - 1)\)-sphere.
2. A is bounded and lies in \(\text{Int} C(B)\).
3. \(M(A, B)\) is bounded.

Proof. Statements (1) and (2) are equivalent by Theorem 3.2, and (1) implies (3). Suppose \(M\) is bounded. Since \(M\) separates A from B and is homeomorphic to an open subset of an \((n - 1)\)-sphere (Theorem 3.2), \(M\) must be an \((n - 1)\)-sphere. Thus (3) implies (1).

Remarks and Examples. When dealing with the midset \(M\) of two connected subsets of \(E^n\) it is important to realize that \(M\) is connected \([14]\). Thus when B is connected in Corollary 3.2, there are only three possibilities for the midset.

An example was given in §1 of a nonmanifold midset \(M(A, B)\) in \(E^3\) where A is a circle and B is a 2-sphere. Of course A is not convex nor is it simply connected. However B is simply connected, so this condition is not sufficient to insure a manifold midset. We leave to the interested reader the description of arcs A and B in \(E^3\) whose midset is not a manifold.

A classification of all midset manifolds resulting when A is convex would be interesting. Theorem 3.3 gives the situation when A is a singleton set. A natural attempt at such a classification is to prove that a point a can always be chosen in A such that \(M(A, B)\) is homeomorphic to \(M(\{a\}, B)\), but this is not generally true. In \(E^2\), let \(A = \{(x, y) \mid y < 2\text{ and } x = 0\}\) and let \(B = \{(x, y) \mid x = 1\text{ and } |y| < 1\}\). Then no such point in A exists. Nevertheless, the manifolds listed in Corollary 3.2 seem to be the only ones that are realized in \(E^3\) even when the convex set A is not a singleton set.

4. Tame midset manifolds. In the situation where \(A = \{a\}\) and \(a \notin B\), it is easy to prove the resulting \((n - 1)\)-manifold \(M(A, B)\) tame in \(E^3\) because the radial map \(h\) defined in the proof of Theorem 3.1 can be extended to a homeomorphism from a bicollar on \(M(A, B)\) to one on the \((n - 1)\)-sphere \(\partial_r(A)\). The general situation where neither set is degenerate seems more difficult; nevertheless when midsets are manifolds in \(E^3\) they must be tame.

Theorem 4.1. If a 2-manifold \(K\) is a subset of the midset \(M\) of two disjoint closed subsets A and B of \(E^3\), then \(K\) is tame in \(E^3\).

Proof. From the hypothesis, \(M\) is the common boundary of the disjoint open sets \(\{A < B\}\) and \(\{B < A\}\) (see [14, Theorem 2]). Let \(m \in K\) and let \(a\)
be a foot of \(m \) on \(A \). The set \(\{a \leq B\} \) is convex because it is the intersection of the collection \(\{\{a \leq \{b\}\}\mid b \in B\} \) of closed, convex, half-spaces. Since \(\{a \leq B\} \) contains \(m \), is convex, and has \(a \) in its interior, it contains a solid right circular cone \(C_m \) with vertex \(m \). The cone \(C_m \) lies in \(\{A \leq B\} \) because \(\{a \leq B\} \) does. Hence \(K \) can be "touched by a pencil" at each \(m \in K \) from \(\{A \leq B\} \). Similarly such a cone exists in \(\{B \leq A\} \).

It follows directly from Corollary 4.6 of [5] that \(K \) is tame if \(\Gamma \) is a 2-sphere. Otherwise, for each \(m \in K \), there exist a 2-sphere \(S \) and a disk \(D \) in \(K \cap S \) with \(m \in \text{Int} \ D \) (see [2, Theorem 5.4.1, p. 296]). For convenience we assume \(D \) lies in the closure of \((\text{Int} S) \cap \{A \leq B\} \). Let \(E \) be a disk such that \(M \in \text{Int} E \subset E \subset \text{Int} D \), and for each \(p \in E \) choose a subcone \(K_p \) of \(C_p \) small enough to lie in \(S \cup \text{Int} S \). Let \(X \) be the closure of \(\bigcup_{p \in E} K_p \), and notice that \(X \) is the union of convex 3-cells. Adjust \(S \) to obtain a 2-sphere \(S' \) such that \(X \subset S' \cup \text{Int} S' \) and \(S' \) is locally tame modulo \(X \) (see [2, Theorem 4.6.1, p. 282]). By Theorem 4.5 of [5], \(S' \) is tame from \(\text{Ext} S' \), which implies that \(K \) is locally tame at \(m \) from \(\{B \leq A\} \). A similar argument, where the cones \(K_p \) are selected in \(S \cup \text{Ext} S \), shows \(K \) locally tame at \(m \) from \(\{A \leq B\} \); hence \(K \) is tame.

Remarks. The above proof generalizes to \(E^n(n > 3) \) to show that an \((n - 1)-\text{manifold subset of the midset of disjoint closed sets } A \text{ and } B \) can be "touched by convex n-cells" from both \(\{A \leq B\} \) and \(\{A \geq B\} \); however, this does not imply tameness for an \((n - 1)-\text{manifold in } E^n \) if \(n > 4 \). An example can be obtained using Daverman's "inflation" technique [8, §11].

5. When an \(\epsilon \)-boundary is tame. Weill [13, p. 248] asked if a 2-sphere \(S \) in \(E^3 \) is tame when it is, for some \(\epsilon > 0 \), the \(\epsilon \)-boundary of a compact set \(X \). As he pointed out, the special case where \(X \) lies in one component \(U \) of \(E^3 - S \) can be partially resolved using Theorem 4.5 of [5]; in this case \(S \) is tame from \(E^3 - (S \cup U) \). However \(S \) must be tame from both sides in the case where \(X \) intersects both \(\text{Int} S \) and \(\text{Ext} S \); in fact, in this case the result carries over to \(E^n(n \neq 4) \).

Theorem 5.1. If a compact connected \((n - 1)-\text{manifold } M \) in \(E^n \) is the \(\epsilon \)-boundary of a set \(A \) that intersects both components of \(E^n - M \), then \(M \) is tame in \(E^n(n \neq 4) \).

Proof. We may assume \(A \) closed since \(\partial_{\epsilon}(A) = \partial_{\epsilon}(\overline{A}) \). Define \(E = A \cap \text{Ext} M \) and \(I = A \cap \text{Int} M \). To show that \(\partial_{\epsilon}(E) = M \) suppose \(p \in \partial_{\epsilon}(E) - M \). Since \(p \not\in \partial_{\epsilon}(A) \), we have \(d(p, I) < \epsilon \). But then \(M \) fails to separate \(E \) from \(I \) because there exist segments \([a, p]\) and \([p, e]\) whose union is a path from \(a \in I \) to \(e \in E \) which fails to intersect \(M \). Thus \(\partial_{\epsilon}(E) \subset M \), and it follows that \(\partial_{\epsilon}(E) = M \) since \(\partial_{\epsilon}(E) \) must separate \(E^3 \). Similarly \(\partial_{\epsilon}(I) = M \).

In case \(n = 3 \), Theorem 5.1 can be reduced to Theorem 4.1 by showing that \(M \) is the midset of \(I \) and \(E \); however, we do not make this restriction on \(n \). The strategy is to show that \(E^n - M \) is \(1-\text{ULC} \), for then the tameness of \(M \) follows from [6] or [7] if \(n > 5 \) and from Bing's result [2, Theorem 6.4.1] if
$n = 3$. To show $E^n - M$ is $1 - \text{ULC}$ we first note that for each point $p \in M$ there are points a and b of I and E, respectively, such that the closed balls $B(a, \varepsilon)$ and $B(b, \varepsilon)$ are tangent at p and lie in the closures of $\text{Int} M$ and $\text{Ext} M$, respectively. Griffith [10] proved that such a manifold must be locally spanned from both complementary domains, and Burgess [2, Theorem 6.5.2, p. 305] showed that locally spanned manifolds have $1 - \text{ULC}$ complementary domains. Although the Burgess and Griffith results just cited were stated for E^3 the proofs work as well in higher dimensions.

Remarks. Roughly speaking, Theorem 5.1 says that a manifold M is tame when it is the ε-boundary of a set A which has two pieces separated by a gap of width 2ε. One can extract a seemingly more general theorem to the effect that a manifold ε-boundary $\partial_\varepsilon(A)$ is tame provided it is the mindset of A and $\partial_{2\varepsilon}(A)$. However this situation does not seem to arise except in obvious cases (for example when A is convex) in which the tameness of $\partial_\varepsilon(A)$ is clear. In this connection it is interesting to let A be the union of unit intervals $[0, 0)$, $(1,0)]$ and $[0, (0, 1)]$ in E^2. There is no positive number ε such that $\partial_\varepsilon(A) = M(A, \partial_{2\varepsilon}(A))$, yet A is a rather simple set.

References

1. H. Bell, *Some topological extensions of plane geometry* (manuscript).