FIXED POINTS OF ANOSOV MAPS OF CERTAIN MANIFOLDS

JONATHAN D. SONDOW

ABSTRACT. Lemma. If H is a graded exterior algebra on odd generators with augmentation ideal J and $h: H \to H$ is an algebra homomorphism inducing $J/J^2 \to J/J^2$ with eigenvalues $\{\lambda_i\}$, then the Lefschetz number $L(h) = (1 - \lambda_1)$. The lemma is applied to an Anosov map or diffeomorphism of a compact manifold with real cohomology H to give sufficient conditions that none of the eigenvalues λ_i be a root of unity and that there exist a fixed point. In particular, every Anosov diffeomorphism of a compact connected Lie group has a fixed point.

1. Introduction and statement of results. An Anosov map of a smooth manifold M is a smooth map $f: M \to M$ such that (1) There is a splitting of the tangent bundle $T(M)$ into a continuous Whitney sum $T(M) = E^s + E^u$ of subbundles which is invariant under the derivative map $Df: T(M) \to T(M)$.

(2) There exists a Riemannian metric $\|\|$ on $T(M)$ and constants $C > 0$, $C' > 0$, $0 < \lambda < 1$, such that

$$\|Df^m(v)\| \leq C\lambda^m\|v\|$$

and

$$\|DF^m(w)\| \geq C'\lambda^{-m}\|w\|$$

for all $v \in E^s$, $w \in E^u$, and $m \in \mathbb{Z}^+$. One checks easily (see [9, §3.1]) that for M compact the second condition is independent of which Riemannian metric is chosen.

An Anosov diffeomorphism is an Anosov map which is a diffeomorphism. Examples on the n-torus $T^n = S^1 \times \ldots \times S^1$ are gotten by taking a matrix $f_0 \in GL(n, \mathbb{Z})$ none of whose eigenvalues has absolute value 1. Then f_0 induces an automorphism f of $T^n = R^n/Z^n$ which, it is not hard to show, is an Anosov diffeomorphism. Nontoral examples have been given by Smale [9, §1.3] on nilmanifolds and by Shub [8, p. 189] on infranilmanifolds.

Examples of Anosov maps g can be constructed on products $M \times N \times P$ by taking $g = p \circ (id_M \times f \times e)$, where $p: M \times N \times P \to * \times N \times P \subseteq M \times N \times P$ is projection, $f: N \to N$ is an Anosov diffeomorphism, and $e: P \to P$ is an expanding map (= Anosov map with $E^s = 0$; see Shub [8]).

In [9, §3.4], Smale asks whether every Anosov diffeomorphism has a fixed point.
point. We obtain the following partial answers. Say that an algebra H over R is a T-algebra if H is isomorphic to the real cohomology algebra of a product of odd-dimensional spheres; i.e., H is a graded exterior algebra on generators of odd degree. A manifold whose real cohomology is a T-algebra will be called a T-manifold.

Theorem 1. Let f be an Anosov map of a compact T-manifold M. If E^n is orientable and f has a periodic point then f has a fixed point.

Theorem 2. If M is a compact T-manifold, then every Anosov diffeomorphism of M with E^3 or E^n orientable has a fixed point.

Corollary. Every Anosov diffeomorphism of a compact, connected Lie group G or of G/F, F a finite subgroup of G, has a fixed point.

This generalizes the case $G = T^n$ proved by Franks [3] and Manning [7]. The following result, which restricts the homotopy classes that admit Anosov diffeomorphisms, is also an extension of work of Franks [3] on tori and Manning [6], [7] on infranilmanifolds. See also Hirsch [4].

Theorem 3. Let f be an Anosov diffeomorphism of a compact T-manifold M, with E^n or E^3 orientable. Denote by J the augmentation ideal of $H^*(M; R)$ consisting of positive dimensional elements. Then no eigenvalue of $f^*: J/J^2 \to J/J^2$ is a root of unity.

The main tool used in the proofs of these results is the following algebraic lemma, which may be of independent interest.

Lemma. Let H be a T-algebra with augmentation ideal J and let $h: H \to H$ be an algebra homomorphism inducing $J/J^2 \to J/J^2$ with eigenvalues $\{\lambda_i\}$. Then the Lefschetz number $L(h^q) = \prod_i (1 - \lambda_i^q)$ for $q > 0$.

Recall the definition

$$L(h) = \sum_{k=0}^{n} (-1)^k \text{trace}(h|H_k: H_k \to H_k),$$

where $H = H_0 \oplus H_1 \oplus \ldots \oplus H_n$ is the grading of H.

I do not know whether any of the compact manifolds other than tori which admit Anosov diffeomorphisms are T-manifolds. Some of the nilmanifold examples definitely are not T-manifolds.

Finally, I would like to thank John Milnor and the referee for reformulating Theorem 3 and the Lemma and shortening their proofs.

2. **Proofs.**

Proof of Lemma. h induces an algebra homomorphism from the direct sum $H/J \oplus J/J^2 \oplus J^2/J^3 \oplus \ldots$ to itself. This induced homomorphism has the same Lefschetz number. But J'/J'^{r+1} can be identified with the rth exterior power $E^r(J/J^2)$. So if \tilde{h} denotes the induced map $J/J^2 \to J/J^2$, then $L(h) = \sum L(E'h) = \sum (-1)^r \text{trace} E'h$ since $E^r(J/J^2)$ is concentrated...
in even or odd dimensions according as \(r \) is even or odd. But trace \(E^r \) equals the \(r \)th elementary symmetric function of the eigenvalues \(\lambda_i \). (This is proved by putting \(h \) in triangular form over a suitable extension field.) Hence \(L(h) = \prod(1 - \lambda_i) \). The Lemma follows.

Remark. The proof works over any field.

Proof of Theorem 1. Assume \(f \) has no fixed points. Then \(L(f^*) = 0 \) since \(E^u \) orientable implies \(|L(f^*)| = \text{Card}(\text{Fix}(f)) \), see [3, p. 123]. Then some \(\lambda_i = 1 \), using the Lemma with \(H = H^*(M; R) \) and \(h = f^* \). Hence

\[
\text{Card}(\text{Fix}(f^q)) = |L(f^q^*)| = 0 \quad \text{for all } q > 0,
\]
again using the Lemma, so \(f \) can have no periodic points. This contradicts the hypothesis and proves the theorem.

Proof of Theorem 2. Either \(E^s \) or \(E^u \) is orientable. We may assume it is \(E^u \), since otherwise we may replace \(f \) by the Anosov diffeomorphism \(f^{-1} \). Theorem 2 now follows from Theorem 1 using the fact that every Anosov diffeomorphism has a periodic point (Proposition 1.7 of [2]).

Proof of Corollary. We are given an Anosov diffeomorphism \(f \) of a quotient \(M = G/F \), where \(F \) is a finite subgroup of a compact, connected Lie group \(G \).

Case I. \(E^u \) is orientable. By a theorem of Hopf (see [5] or [1, Chapter I]), \(G \) is a \(T \)-manifold. A well-known easy argument shows that since \(G \) is connected, \(H^*(G; R) \cong H^*(M; R) \). Thus \(M \) is a \(T \)-manifold and Theorem 2 implies \(f \) has a fixed point.

Case II. \(E^u \) is nonorientable. Then \(f \) lifts to an Anosov diffeomorphism \(f': M' \to M' \) of a connected 2-fold covering \(M' \) of \(M \) with \(E^u \) orientable. The following result implies, as above, that \(M' \) is a \(T \)-manifold. Hence \(f' \), and therefore \(f \), has a fixed point, completing the proof of the Corollary.

Claim. There exists a compact, connected Lie group \(G' \) and a finite subgroup \(F' \) such that \(G'/F' \) is diffeomorphic to \(M' \).

Proof. Let \(p: G \to G/F = M \) and \(p': M' \to M \) be the projection maps. Set \(\pi = p_\ast \pi_1 G \cap p'_\ast \pi_1 M' \) and let \(p_0: G' \to M \) be the covering space such that \(p_0\ast \pi_1 G' = \pi \). Now \(G' \) is also the covering space of \(G \) associated to the subgroup \(p_\ast \pi_1^{-1}(\pi) \) of \(\pi_1 G \).

It is well known that \(G' \) is therefore a connected Lie group and the covering projection \(p_1: G' \to G \) is a homomorphism. Clearly \([\pi_1 M; \pi] < \infty \), so \(G' \) is compact.
Let F_1 denote the subgroup $p_1^{-1}(F)$ of G'. There is a natural isomorphism $h: \pi_1 M'/\pi \to F_1$. Set $F' = h(p'_*\pi_1 M'/\pi) \subset F_1$. Then F' is a finite subgroup of G' and the natural projection $G'/F' \to G'/F_1 = M$ induces a monomorphism of fundamental groups which carries $\pi_1(G'/F')$ onto $p'_*\pi_1 M'$. It follows from the uniqueness of covering spaces associated to a subgroup that G'/F' is diffeomorphic to M'. This completes the proof.

Proof of Theorem 3. Suppose some eigenvalue of \tilde{f}^* is a qth root of unity, $q > 0$. As in the proof of Theorem 2, we may assume E'' is orientable. Then $\text{Card}(\text{Fix}(f^q)) = |L(f^q)| = 0$ by the Lemma, contradicting Theorem 2.

Remark. A 2-fold cover of a T-manifold might not be a T-manifold, e.g., $S^1 \times RP^2$. Thus the hypothesis of orientability in the theorems cannot be dispensed with as in the proof of the Corollary.

References

Institute for Defense Analyses, Princeton, New Jersey 08540