## Distribution of zeros and limit behavior of solutions of differential equations

HTML articles powered by AMS MathViewer

- by H. Guggenheimer PDF
- Proc. Amer. Math. Soc.
**61**(1976), 275-279 Request permission

## Abstract:

Elementary arguments of projective geometry are used to obtain information about the limit behavior of solutions of ordinary linear differential equations if certain distributions of zeros do not occur.## References

- John H. Barrett,
*Oscillation theory of ordinary linear differential equations*, Advances in Math.**3**(1969), 415â€“509. MR**257462**, DOI 10.1016/0001-8708(69)90008-5 - George D. Birkhoff,
*On the solutions of ordinary linear homogeneous differential equations of the third order*, Ann. of Math. (2)**12**(1911), no.Â 3, 103â€“127. MR**1503560**, DOI 10.2307/2007241 - H. Guggenheimer,
*Homogeneous linear differential equations with only periodic solutions*, Israel J. Math.**9**(1971), 49â€“52. MR**271469**, DOI 10.1007/BF02771619 - H. Guggenheimer,
*Geometric theory of differential equations. IV. Two-point boundary value problems of linear equations*, Rend. Mat. (6)**5**(1972), 237â€“250; addenda and corrigenda, ibid. (6) 5 (1972), 853 (English, with Italian summary). MR**454127** - Maurice Hanan,
*Oscillation criteria for third-order linear differential equations*, Pacific J. Math.**11**(1961), 919â€“944. MR**145160** - F. Neuman,
*Geometrical approach to linear differential equations of the $n$-th order*, Rend. Mat. (6)**5**(1972), 579â€“602 (English, with Italian summary). MR**324141** - Jerry R. Ridenhour and Thomas L. Sherman,
*Conjugate points for fourth order linear differential equations*, SIAM J. Appl. Math.**22**(1972), 599â€“603. MR**303009**, DOI 10.1137/0122056 - Beniamino Segre,
*Alcune proprietĂ differenziali in grande delle curve chiuse sghembe*, Rend. Mat. (6)**1**(1968), 237â€“297 (Italian, with English summary). MR**243466**
E. J. Wilczynski,

*Projective differential geometry of curves and ruled surfaces*, Teubner, Leipzig, 1905; Chelsea, New York.

## Additional Information

- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**61**(1976), 275-279 - MSC: Primary 34C10
- DOI: https://doi.org/10.1090/S0002-9939-1976-0473335-0
- MathSciNet review: 0473335