SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

A NOTE ON THE DENJOY INTEGRABILITY OF ABSTRACTLY-VALUED FUNCTIONS

T. J. MORRISON

Abstract. We present necessary and sufficient conditions on a Banach space X that the classes of strongly measurable X-valued Denjoy-Pettis integrable and Denjoy-Gelfand integrable functions coincide.

In this note we give necessary and sufficient conditions on a Banach space X that the classes of strongly measurable, X-valued Denjoy-Pettis and Denjoy-Gelfand integrable functions coincide. We preserve here, for the most part, the notations of D. W. Solomon [3] and, for the sake of simplicity, restrict our attention to Lebesgue measure λ on $[0, 1]$.

Throughout, following Solomon, we let DP denote the Denjoy-Gelfand integral and DP^* the Denjoy-Pettis integral. All point functions f will be strongly measurable, defined on $[0, 1]$ and take values in the Banach space X. Letting \mathcal{I} denote the collection of all open subintervals of $[0, 1]$, we have the following

Theorem. The classes of strongly measurable DP-integrable and DP^*-integrable functions with values in X coincide if and only if X contains no isomorphic copy of c_0.

Proof. It is clear from the definition that every DP^*-integrable function is DP-integrable. So, suppose $X \nsubseteq c_0$ and that $f: [0, 1] \to X$ is strongly measurable and DP-integrable on $I \in \mathcal{I}$ with indefinite DP-integral F. Let $W \subseteq [0, 1]$ be perfect and $I' \subseteq I$, $I' \subseteq I$ with $I' \cap W \neq \emptyset$. Then since f is DP-integrable on I, there is a subinterval $\bar{I} \subseteq I'$ with $\bar{I} \cap W \neq \emptyset$ such that given any interval $I'' \subseteq \bar{I}$, x^*f is Lebesgue integrable on $I'' \cap W$ for all $x^* \in X^*$. Furthermore (by Corollary 1 to Theorem 3.5.3 of [2]), the strong measurability of f yields that on any such $I'' \cap W$, f can be represented in the form

$$f(t) = \sum_n x_n x_{E_n}(t) + g(t)$$

where $(x_n) \subseteq X$, (E_n) is a measurable partition of $I'' \cap W$ and g is bounded

Presented to the Society, January 23, 1976; received by the editors November 6, 1975

and strongly measurable. Now letting $E = I'' \cap W$, by the integrability of $x^* f$ on E, we have for all such E and all $x^* \in X^*$,

$$\sum_n |x^*(x_n) \lambda(E_n \cap E)| = \sum_n |x^*(\lambda(E_n \cap E)x_n)| < \infty.$$

Hence the series $\sum_n \lambda(E_n \cap E)x_n$, for all $E = I'' \cap W$, $I'' \subseteq \bar{I}$, is weakly unconditionally Cauchy in X, and so, by the Bessaga-Pelczyński characterization of Banach spaces not containing c_0 [1], $\sum_n \lambda(E_n \cap E)x_n$ is unconditionally convergent in X for all $I'' \cap W = E$, $I'' \subseteq \bar{I}$. Thus (see pp. 77–78 of [2]) f is Pettis integrable on $\bar{I} \cap W$. Finally, by the uniqueness of the representing set function for f, $\int_{I''} F_W = (P) \int_{I''} f x_W d\lambda$ holds for all subintervals $I'' \subseteq \bar{I}$ and so f is DP^*-integrable on I.

On the other hand, suppose $X \supseteq c_0$. Define the function $f: [0, 1] \to c_0$ by

$$f(t) = (x_{[0,1]}(t), 2x_{[0,1/2]}(t), \ldots, nx_{[0,1/n]}(t), \ldots)$$

for $t \in [0, 1]$. Then it can be readily established that f is DP-integrable but not DP^*-integrable, and the theorem is complete.

Corollary. If X is weakly sequentially complete then every strongly measurable, X-valued Denjoy-Gelfand integrable function is Denjoy-Pettis integrable.

References

Department of Mathematics, Kent State University, Kent, Ohio 44242

Current address: Department of Mathematics, Hiram College, Hiram, Ohio 44234