A CURIOSITY CONCERNING THE DEGREES OF THE CHARACTERS OF A FINITE GROUP

K. L. FIELDS

Abstract. Let G be a finite group with irreducible characters $\{\ldots, \chi, \ldots\}$ and $K = \mathbb{Q}(\ldots, \chi, \ldots)$ the field generated over the rationals by their values. We will prove:

If $K = \mathbb{Q}$ (or if $[K: \mathbb{Q}]$ is odd) then \[\prod_{\chi(1) \text{ odd}} \chi(1) \text{ is a perfect square.}\]

More generally,

Theorem. (a) \[(-1)^{(\Sigma \chi(1) -(m+1))/2} \prod_{\chi(1) \text{ odd}} \chi(1)\]

is a square in K if $|G|$ is even.

(b) $(-1)^{(|G|-1)/2}$ is a square in K if $|G|$ is odd.

[Recall $|G| = \Sigma \chi(1)^2$ so that $|G| \equiv \Sigma \chi(1) \mod 2$, and so $\Sigma \chi(1) \equiv m + 1 \mod 2$ where m denotes the number of involutions in G.]

Proof of Theorem. Let F be any splitting field for G such that $\text{char } F \nmid |G|$. Consider the F-vector space FG on which we have the nondegenerate symmetric bilinear form defined by $B(g, h) = \rho(gh)$ for $g, h \in G$, where ρ is the trace of the regular representation of G. So

\[B(g, h) = \begin{cases} 0, & g \neq h^{-1}, \\ |G|, & g = h^{-1}, \end{cases}\]

and with respect to this basis of group elements, B is the direct sum of $(|G| - (m + 1))/2$-matrices $(\begin{smallmatrix} 0 & |G| \\ |G| & 0 \end{smallmatrix})$ and $m + 1 (1 \times 1)$-matrices $(|G|)$. So the discriminant of B is $(-1)^{(|G|-1)/2}|G|^{|G|}$. But, if we identify FG with the direct sum $\sum M_{\chi(1)}(F)$ of $(\chi(1) \times \chi(1))$ matrix algebras over F, and if e_{ij}^χ denote the matrix units, then

\[B(e_{ij}^\chi, e_{kl}^\lambda) = \begin{cases} \chi(1), & i = l, j = k, \chi = \lambda, \\ 0, & \text{otherwise}. \end{cases}\]

So with respect to this basis, B is the direct sum of $(\chi(1)^2 - \chi(1))/2$-matrices $(\begin{smallmatrix} 0 & \chi(1) \\ \chi(1) & 0 \end{smallmatrix})$ and $\chi(1) (1 \times 1)$-matrices $(\chi(1))$, and so has discriminant

Received by the editors May 21, 1975 and, in revised form, October 21, 1975.

\[\prod_{\chi} (-1)^{(\chi(1)^2 - \chi(1))/2} (\chi(1)^2 - \chi(1))/2 \chi(1)^{\chi(1)} \]

\[= (-1)^{|G| - \Sigma \chi(1)^2}/2 \prod \chi(1)^{\chi(1)^2}. \]

Hence

\[(-1)^{|G| - (m + 1)/2} |G|^{|G|} \quad \text{and} \quad (-1)^{|G| - \Sigma \chi(1)^2}/2 \prod \chi(1)^{\chi(1)^2} \]

differ by a square in \(F \).

If \(|G| \) is odd, then the nontrivial characters occur in conjugate pairs, so that \(\prod \chi(1)^{\chi(1)^2} \) is a square; moreover, since \(\Sigma \chi(1) = 1 + 2 \Sigma_{c=1}^{c-1/2} (2k + 1) \), where \(c \) denotes the number of conjugacy classes,

\[\sum \chi(1) \equiv c \mod 4. \]

Also, (Burnside) \(|G| \equiv c \mod 16 \), so we have that \((-1)^{|G| - 1}/2 |G| \) is a square in \(F \).

If \(\text{char } F = 0 \), then the intersection of all splitting fields \(F \) is just \(K \). [Given a simple algebra finite dimensional over a number field \(L \), the Grunwald-Wang and Tchebotarev Density Theorems imply the existence of a prime \(p \) in \(L \) and maximal subfields \(F_1 \) and \(F_2 \) such that \(p \) splits completely in \(F_1 \) but is divisible by only one prime of \(F_2 \); hence \(F_1 \cap F_2 = L \). An analogous result holds for a semisimple algebra all of whose simple components have the same center; in the case of a group algebra, this common center can be chosen to be \(K \) above], and so our Theorem follows.

Remarks.

1. If all the characters of \(G \) are real, we must have

\[(-1)^{(\Sigma \chi(1) - (m + 1))/2} = 1, \quad \text{i.e.,} \quad \sum \chi(1) \equiv m + 1 \mod 4. \]

2. If \(F \) can be chosen to be real, we have that

\[\sum \frac{\chi(1)^2 - \chi(1)}{2} = \frac{|G| - (m + 1)}{2} = \text{Witt index of } B, \]

and so \(\Sigma \chi(1) = m + 1 \).

Both of these facts follow also from the classical Frobenius-Schur count of involutions.

3. If \(G \) is cyclic of odd order \(n \), then Theorem (b) states that

\[(-1)^{(n - 1)/4} \sqrt{n} \in \mathbb{Q}(\xi_n). \]

4. Recall that for even \(|G| \), there are an odd number of nonprincipal, nonconjugate characters having both odd degree and an odd number of conjugates [Proc. Amer. Math. Soc. 30 (1971), 247–248]. In other words, \(\prod_{\chi(1) \text{ odd}} \chi(1) \) is nontrivial, and is never square solely by virtue of conjugate characters.

5. It would be of interest to find necessary and sufficient conditions on \(G \) to insure that every character has an odd number of conjugates (this implies
that the characters are real) i.e., that $[K : \mathbb{Q}]$ is odd. It would also be of interest to determine exactly the discriminant of K. Also, it is unknown which abelian extensions of \mathbb{Q} appear as $K = \mathbb{Q}(\ldots, \chi, \ldots)$ for some finite group G.

(6) We thank F. Gross and G. Walls for simplifying our original statement for odd $|G|$.