New subclasses of the class of close-to-convex functions
HTML articles powered by AMS MathViewer
- by Pran Nath Chichra
- Proc. Amer. Math. Soc. 62 (1977), 37-43
- DOI: https://doi.org/10.1090/S0002-9939-1977-0425097-1
- PDF | Request permission
Abstract:
In this paper we introduce new subclasses of the class of close-to-convex functions. We call a regular function $f(z)$ an alpha-close-to-convex function if $(f(z)f’(z)/z) \ne 0$ for z in E and if for some nonnegative real number $\alpha$ there exists a starlike function $\phi (z) = z + \cdots$ such that \[ \operatorname {Re} \;\left [ {(1 - \alpha )\frac {{zf’(z)}}{{\phi (z)}} + \alpha \frac {{(zf’(z))’}}{{\phi ’(z)}}} \right ] > 0\] for z in E. We have proved that all alpha-close-to-convex functions are close-to-convex and have obtained a few coefficient inequalities for $\alpha$-close-to-convex functions and an integral formula for constructing these functions. Let ${\mathfrak {F}_\alpha }$ be the class of regular and normalised functions $f(z)$ which satisfy $\operatorname {Re} \;(f’(z) + \alpha zf''(z)) > 0$ for z in E. $f(z) \in {\mathfrak {F}_\alpha }$ gives $\operatorname {Re} f’(z) > 0$ for z in E provided $\operatorname {Re} \alpha \geqslant 0$. A sharp radius of univalence of the class of functions $f(z)$ for which $zf’(z) \in {\mathfrak {F}_\alpha }$ has also been obtained.References
- I. S. Jack, Functions starlike and convex of order $\alpha$, J. London Math. Soc. (2) 3 (1971), 469–474. MR 281897, DOI 10.1112/jlms/s2-3.3.469
- F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8–12. MR 232926, DOI 10.1090/S0002-9939-1969-0232926-9
- T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104 (1962), 532–537. MR 140674, DOI 10.1090/S0002-9947-1962-0140674-7
- Petru T. Mocanu, Une propriété de convexité généralisée dans la théorie de la représentation conforme, Mathematica (Cluj) 11(34) (1969), 127–133 (French). MR 273000
- Sanford S. Miller, Petru Mocanu, and Maxwell O. Reade, All $\alpha$-convex functions are univalent and starlike, Proc. Amer. Math. Soc. 37 (1973), 553–554. MR 313490, DOI 10.1090/S0002-9939-1973-0313490-3
- Zeev Nehari, Conformal mapping, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1952. MR 0045823
- Z. Nehari and E. Netanyahu, On the coefficients of meromorphic schlicht functions, Proc. Amer. Math. Soc. 8 (1957), 15–23. MR 83038, DOI 10.1090/S0002-9939-1957-0083038-0
- K. Noshiro, On the theory of cluster sets of analytic functions, Amer. Math. Soc. Transl. (2) 8 (1958), 1–12. MR 0092859, DOI 10.1090/trans2/008/01
- St. Ruscheweyh and T. Sheil-Small, Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture, Comment. Math. Helv. 48 (1973), 119–135. MR 328051, DOI 10.1007/BF02566116
- K\B{o}ichi Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72–75. MR 107005, DOI 10.2969/jmsj/01110072
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 62 (1977), 37-43
- MSC: Primary 30A32
- DOI: https://doi.org/10.1090/S0002-9939-1977-0425097-1
- MathSciNet review: 0425097