Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

New subclasses of the class of close-to-convex functions


Author: Pran Nath Chichra
Journal: Proc. Amer. Math. Soc. 62 (1977), 37-43
MSC: Primary 30A32
DOI: https://doi.org/10.1090/S0002-9939-1977-0425097-1
MathSciNet review: 0425097
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we introduce new subclasses of the class of close-to-convex functions. We call a regular function $f(z)$ an alpha-close-to-convex function if $(f(z)f’(z)/z) \ne 0$ for z in E and if for some nonnegative real number $\alpha$ there exists a starlike function $\phi (z) = z + \cdots$ such that \[ \operatorname {Re} \;\left [ {(1 - \alpha )\frac {{zf’(z)}}{{\phi (z)}} + \alpha \frac {{(zf’(z))’}}{{\phi ’(z)}}} \right ] > 0\] for z in E. We have proved that all alpha-close-to-convex functions are close-to-convex and have obtained a few coefficient inequalities for $\alpha$-close-to-convex functions and an integral formula for constructing these functions. Let ${\mathfrak {F}_\alpha }$ be the class of regular and normalised functions $f(z)$ which satisfy $\operatorname {Re} \;(f’(z) + \alpha zf''(z)) > 0$ for z in E. $f(z) \in {\mathfrak {F}_\alpha }$ gives $\operatorname {Re} f’(z) > 0$ for z in E provided $\operatorname {Re} \alpha \geqslant 0$. A sharp radius of univalence of the class of functions $f(z)$ for which $zf’(z) \in {\mathfrak {F}_\alpha }$ has also been obtained.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30A32

Retrieve articles in all journals with MSC: 30A32


Additional Information

Keywords: Alpha-starlike functions, convex functions, starlike functions, close-to-convex functions, radius of univalence
Article copyright: © Copyright 1977 American Mathematical Society