Polynomial density in Bers spaces
HTML articles powered by AMS MathViewer
- by Jacob Burbea
- Proc. Amer. Math. Soc. 62 (1977), 89-94
- DOI: https://doi.org/10.1090/S0002-9939-1977-0425139-3
- PDF | Request permission
Abstract:
Let D be a bounded Jordan domain such that $\smallint \;\smallint {\;_D}\lambda _D^{2 - q}\;dx\;dy\; < \infty$ for $q > 1$. Here ${\lambda _D}(z)$ is the Poincaré metric for D. Define $A_q^p(D)$, the Bers space, to be the Fréchet space of holomorphic functions f on D, such that $\left \| f \right \|_{q,p}^p = \smallint \;\smallint {\;_D}\lambda _D^{2 - qp}|f{|^p}\;dx\;dy$ is finite, $0 < p < \infty ,qp > 1$. It is well known that the polynomials are dense in $A_q^p(D)$ for $qp \geqslant 2$. We show that they are dense in $A_q^p(D)$ for $qp > 1$ irrespective whether the boundary of D is rectifiable or not.References
- Lipman Bers, Automorphic forms and Poincaré series for infinitely generated Fuchsian groups, Amer. J. Math. 87 (1965), 196–214. MR 174737, DOI 10.2307/2373231
- Lipman Bers, A non-standard integral equation with applications to quasiconformal mappings, Acta Math. 116 (1966), 113–134. MR 192046, DOI 10.1007/BF02392814
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- C. J. Earle and A. Marden, Projections to automorphic functions, Proc. Amer. Math. Soc. 19 (1968), 274–278. MR 224813, DOI 10.1090/S0002-9939-1968-0224813-6
- G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. II, Math. Z. 34 (1932), no. 1, 403–439. MR 1545260, DOI 10.1007/BF01180596
- Lars Inge Hedberg, Weighted mean square approximation in plane regions, and generators of an algebra of analytic functions, Ark. Mat. 5 (1965), 541–552 (1965). MR 219729, DOI 10.1007/BF02591530
- Marvin I. Knopp, A corona theorem for automorphic forms and related results, Amer. J. Math. 91 (1969), 599–618. MR 251219, DOI 10.2307/2373341
- Thomas A. Metzger, On polynomial approximation in $A_{q}(D)$, Proc. Amer. Math. Soc. 37 (1973), 468–470. MR 310260, DOI 10.1090/S0002-9939-1973-0310260-7
- Thomas A. Metzger, On polynomial density in $A_{q}(D)$, Proc. Amer. Math. Soc. 44 (1974), 326–330. MR 340623, DOI 10.1090/S0002-9939-1974-0340623-6
- Mark Sheingorn, Poincaré series of polynomials bounded away from zero on a fundamental region, Amer. J. Math. 95 (1973), 729–749. MR 344455, DOI 10.2307/2373696
- J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1960. MR 0218587
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 62 (1977), 89-94
- MSC: Primary 30A98
- DOI: https://doi.org/10.1090/S0002-9939-1977-0425139-3
- MathSciNet review: 0425139