On majorization and normality of operators
HTML articles powered by AMS MathViewer
- by Mehdi Radjabalipour
- Proc. Amer. Math. Soc. 62 (1977), 105-110
- DOI: https://doi.org/10.1090/S0002-9939-1977-0430851-6
- PDF | Request permission
Abstract:
Recent results of C. R. Putnam are used to find some conditions for normality of operators. The emphasis is on the classes of spectral operators (defined by N. Dunford) and M-hyponormal operators (defined by J. G. Stampfli).References
- C. Apostol, R. G. Douglas, and C. Foiaş, Quasi-similar models for nilpotent operators, Trans. Amer. Math. Soc. 224 (1976), no. 2, 407–415. MR 425651, DOI 10.1090/S0002-9947-1976-0425651-0 C. A. Berger and B. I. Shaw, Hyponormality: its analytic consequences (to appear).
- R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413–415. MR 203464, DOI 10.1090/S0002-9939-1966-0203464-1
- C. K. Fong and M. Radjabalipour, On quasi-affine transforms of spectral operators, Michigan Math. J. 23 (1976), no. 2, 147–150. MR 410458
- C. R. Putnam, Ranges of normal and subnormal operators, Michigan Math. J. 18 (1971), 33–36. MR 276810
- C. R. Putnam, Hyponormal contractions and strong power convergence, Pacific J. Math. 57 (1975), no. 2, 531–538. MR 380493 —, Spectra and measure inequalities (to appear).
- M. Radjabalipour, Ranges of hyponormal operators, Illinois J. Math. 21 (1977), no. 1, 70–75. MR 448140
- Joseph G. Stampfli and Bhushan L. Wadhwa, An asymmetric Putnam-Fuglede theorem for dominant operators, Indiana Univ. Math. J. 25 (1976), no. 4, 359–365. MR 410448, DOI 10.1512/iumj.1976.25.25031 —, On dominant operators (to appear).
- Bhushan L. Wadhwa, $M$-hyponormal operators, Duke Math. J. 41 (1974), 655–660. MR 346577
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 62 (1977), 105-110
- MSC: Primary 47B20
- DOI: https://doi.org/10.1090/S0002-9939-1977-0430851-6
- MathSciNet review: 0430851