Sets which can be extended to $m$-convex sets
HTML articles powered by AMS MathViewer
- by Marilyn Breen
- Proc. Amer. Math. Soc. 62 (1977), 124-128
- DOI: https://doi.org/10.1090/S0002-9939-1977-0430962-5
- PDF | Request permission
Abstract:
Let S be a compact set in ${R^d},{T_0} \subseteq S$. Then ${T_0}$ lies in an m-convex subset of S if and only if every finite subset of ${T_0}$ lies in an m-convex subset of S. For S a closed set in ${R^d}$ and ${T_0} \subseteq S$, let ${T_1} = \{ P:P$ a polytope in S having vertex set in ${T_0},\dim P \leqslant d - 1\}$. If for every three members of ${T_1}$, at least one of the corresponding convex hulls \[ {\text {conv}}\{ {P_i} \cup {P_j}\} ,\quad 1 \leqslant i < j \leqslant 3.\] lies in S, then ${T_0}$ lies in a 3-convex subset of S. An analogous result holds for m-convex sets provided ker $S \ne \emptyset$.References
- Marilyn Breen and David C. Kay, General decomposition theorems for $m$-convex sets in the plane, Israel J. Math. 24 (1976), no. 3-4, 217–233. MR 417925, DOI 10.1007/BF02834753
- J. F. Lawrence, W. R. Hare Jr., and John W. Kenelly, Finite unions of convex sets, Proc. Amer. Math. Soc. 34 (1972), 225–228. MR 291952, DOI 10.1090/S0002-9939-1972-0291952-4
- William L. Stamey and J. M. Marr, Unions of two convex sets, Canadian J. Math. 15 (1963), 152–156. MR 145415, DOI 10.4153/CJM-1963-017-9
- Frederick A. Valentine, Convex sets, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Toronto-London, 1964. MR 0170264
- F. A. Valentine, A three point convexity property, Pacific J. Math. 7 (1957), 1227–1235. MR 99632, DOI 10.2140/pjm.1957.7.1227
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 62 (1977), 124-128
- MSC: Primary 52A20
- DOI: https://doi.org/10.1090/S0002-9939-1977-0430962-5
- MathSciNet review: 0430962