FIBRATIONS OVER A CWh-BASE

ROLF SCHÖN

Abstract. This note provides a short argument for the known fact that the total space of a fibration has the homotopy type of a CW-complex if base and fiber have.

1. Notation. \(F \to E \to B \) is a (Hurewicz) fibration. A CWh-space is a space having the homotopy type of a CW-complex. The following result is due to Stasheff [9, Proposition (0)].

2. Theorem. \(E \) is a CWh-space if \(F \) and \(B \) are.

Proof. We replace the inductive construction of [9] by the CW approximation theorem [8, p. 412] that is due to Whitehead [11]: to the topological space \(E \) there exists a CW-complex \(X \), called a CW-substitute for \(E \) in [10, p. 97], and a weak homotopy equivalence \(f: X \to E \). We make \(f \) into a fibration by taking the associated mapping path fibration \(q: P_f \to E \), see e.g. [8, p. 99]. Then \(q \) is a weak homotopy equivalence too, and \(P_f \) is a CWh-space. Therefore \(pq \) is a fibration with a CWh-fiber by 3 below. Hence \(q \) induces a genuine homotopy equivalence between the fibers of \(pq \) and \(p \) and is therefore a fiber homotopy equivalence by [3, 6.3].

3. Proposition. \(F \) is a CWh-space if \(E \) and \(B \) are.

Proof. Compare [9, Corollary (13)]. By coglueing homotopy equivalences, see [4, (1.2)] or [5, (8.7)], the pullbacks of the horizontal rows in the following diagram are homotopy equivalent.

\[\begin{array}{ccc}
* & \to & B \\
\downarrow & & \downarrow \\
P B & \to & B \\
\downarrow & & \downarrow \\
P Z_p & \to & Z_p \\
 & \to & E \\
\end{array} \]

\(fi \) is the standard factorization of \(p \) over its mapping cylinder \(Z_p \), \(PZ_p \to Z_p \), \(PB \to B \) are the fibrations of paths starting from a point \(b \in Z_p \), resp.

Received by the editors March 8, 1976 and, in revised form, July 19, 1976.

AMS (MOS) subject classifications (1970). Primary 55F05, 54E60.

1 As it is remarked in [7, p. 27] Stasheff's proof is not correct, but can be patched.
\(f(b) = \ast \in B \), and the other arrows are obvious. The upper pullback is the fiber \(F \) (over \(\ast \)), the lower one is the space of the paths on the CWh-space \(Z_p \) starting from \(b \) and ending in \(E \subset Z_p \), and is therefore a CWh-space by [6].

4. Remark. If we assume that \(F \) and \(E \) are CWh-spaces, then the following is true: (a) \(B \) is not a CWh-space in general. Fiber and total spaces of Example 2.4.8 of [8, p. 77] are contractible, but the base space, the “Warsaw circle”, is not contractible, because it has the nonvanishing Čech homotopy group \(\tilde{\pi}_1(B) \cong \mathbb{Z} \) [2, §6]. (b) the loop space \(\Omega B \) is a CWh-space, because it is homotopy equivalent to the fiber of the inclusion \(F \to E \) [10, 2.56], and by delooping homotopy equivalences, see [1], \(B \) is a CWh-space too, if it is path-connected and has a numerable, null homotopic covering.

References