A counterexample in nonlinear interpolation
HTML articles powered by AMS MathViewer
- by Michael Cwikel
- Proc. Amer. Math. Soc. 62 (1977), 62-66
- DOI: https://doi.org/10.1090/S0002-9939-1977-0433227-0
- PDF | Request permission
Abstract:
If $({A_0},{A_1})$ is an interpolation pair with ${A_0} \subset {A_1}$ and T is a possibly nonlinear operator which maps ${A_0}$ into ${A_0}$ and ${A_1}$ into ${A_1}$ and satisfies ${\left \| {Ta} \right \|_{{A_0}}} \leqslant C{\left \| a \right \|_{{A_0}}}$ and ${\left \| {Tb - Tb’} \right \|_{{A_1}}} \leqslant C{\left \| {b - b’} \right \|_{{A_1}}}$ for all $a \in {A_0}$ and b, $b,b’ \in {A_1}$ and for some constant C, then it is known that T also maps the real interpolation spaces ${({A_0},{A_1})_{\theta ,p}}$ into themselves. We give an example showing that T need not map the complex interpolation spaces ${[{A_0},{A_1}]_\theta }$ into themselves. It is also seen that quasilinear operators may fail to preserve complex interpolation spaces.References
- A.-P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190. MR 167830, DOI 10.4064/sm-24-2-113-190
- Richard A. Hunt, On $L(p,\,q)$ spaces, Enseign. Math. (2) 12 (1966), 249–276. MR 223874
- P. Krée, Interpolation d’espaces vectoriels qui ne sont ni normés, ni complets. Applications, Ann. Inst. Fourier (Grenoble) 17 (1967), no. fasc. 2, 137–174 (1968) (French). MR 229026
- J.-L. Lions, Some remarks on variational inequalities, Proc. Internat. Conf. on Functional Analysis and Related Topics (Tokyo, 1969) Univ. Tokyo Press, Tokyo, 1970, pp. 269–282. MR 0267420
- Jaak Peetre, Interpolation of Lipschitz operators and metric spaces, Mathematica (Cluj) 12(35) (1970), 325–334. MR 482280
- Mitchell H. Taibleson, On the theory of Lipschitz spaces of distributions on Euclidean $n$-space. I. Principal properties, J. Math. Mech. 13 (1964), 407–479. MR 0163159
- L. Tartar, Interpolation non linéaire et régularité, J. Functional Analysis 9 (1972), 469–489 (French). MR 0310619, DOI 10.1016/0022-1236(72)90022-5
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 62 (1977), 62-66
- MSC: Primary 46M35; Secondary 47H99
- DOI: https://doi.org/10.1090/S0002-9939-1977-0433227-0
- MathSciNet review: 0433227