Weakly starlike meromorphic univalent functions. II
Author:
Albert E. Livingston
Journal:
Proc. Amer. Math. Soc. 62 (1977), 47-53
MSC:
Primary 30A32
DOI:
https://doi.org/10.1090/S0002-9939-1977-0435376-X
MathSciNet review:
0435376
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: A function $f(z)$ is said to be meromorphic weakly starlike if it has the form $f(z) = - \rho zF(Z)/(z - \rho )(1 - \rho z)$ for $0 < \rho < 1$ where $F(z)$ is a member of ${\Sigma ^\ast }$, the class of meromorphic, normalized starlike univalent functions. The coefficients of the power series expansion in $|z| < \rho$ of a meromorphic weakly starlike function are studied. The integral means of such functions are also discussed.
- J. Clunie, On meromorphic schlicht functions, J. London Math. Soc. 34 (1959), 215–216. MR 107009, DOI https://doi.org/10.1112/jlms/s1-34.2.215
- J. Clunie and P. L. Duren, Addendum: An arclength problem for close-to-convex functions, J. London Math. Soc. 41 (1966), 181–182. MR 190312, DOI https://doi.org/10.1112/jlms/s1-41.1.181-s
- A. W. Goodman, Functions typically-real and meromorphic in the unit circle, Trans. Amer. Math. Soc. 81 (1956), 92–105. MR 75299, DOI https://doi.org/10.1090/S0002-9947-1956-0075299-2
- G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge, at the University Press, 1952. 2d ed. MR 0046395
- James A. Hummel, Extremal properties of weakly starlike $p$-valent functions, Trans. Amer. Math. Soc. 130 (1968), 544–551. MR 222280, DOI https://doi.org/10.1090/S0002-9947-1968-0222280-4
- J. A. Hummel, The coefficients of starlike functions, Proc. Amer. Math. Soc. 22 (1969), 311–315. MR 251209, DOI https://doi.org/10.1090/S0002-9939-1969-0251209-4
- James A. Jenkins, On a conjecture of Goodman concerning meromorphic univalent functions, Michigan Math. J. 9 (1962), 25–27. MR 132170
- Richard J. Libera and Albert E. Livingston, Weakly starlike meromorphic univalent functions, Trans. Amer. Math. Soc. 202 (1975), 181–191. MR 361036, DOI https://doi.org/10.1090/S0002-9947-1975-0361036-2
- Walter Rudin, Real and complex analysis, 2nd ed., McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974. McGraw-Hill Series in Higher Mathematics. MR 0344043
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30A32
Retrieve articles in all journals with MSC: 30A32
Additional Information
Article copyright:
© Copyright 1977
American Mathematical Society