Quasi-nonexpansivity and two classical methods for solving nonlinear equations
HTML articles powered by AMS MathViewer
- by St. Măruşter
- Proc. Amer. Math. Soc. 62 (1977), 119-123
- DOI: https://doi.org/10.1090/S0002-9939-1977-0455354-4
- PDF | Request permission
Abstract:
Let F: ${{\mathbf {R}}_n} \to {{\mathbf {R}}_n}$ be a vector-valued function and let $J(x)$ denote the corresponding Jacobi matrix. The main result states that the functions $x - {J^{ - 1}}(x) \cdot F(x)$ and $x - \lambda {J^T}(x)\cdot F(x)$, where $\lambda$ is a certain positive number, are quasi-nonexpansive. This property is used for establishing the convergence of the Newton and the gradient methods in a finite-dimensional space.References
- B. P. Demidovič and I. A. Maron, Osnovy vychislitel′noĭ matematiki, Second corrected edition, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1963 (Russian). MR 0154386
- J. B. Diaz and F. T. Metcalf, On the set of subsequential limit points of successive approximations, Trans. Amer. Math. Soc. 135 (1969), 459–485. MR 234327, DOI 10.1090/S0002-9947-1969-0234327-0
- L. V. Kantorovič, On Newton’s method, Trudy Mat. Inst. Steklov. 28 (1949), 104–144 (Russian). MR 0038560
- A. M. Ostrowski, Solution of equations and systems of equations, 2nd ed., Pure and Applied Mathematics, Vol. 9, Academic Press, New York-London, 1966. MR 0216746
- W. V. Petryshyn and T. E. Williamson Jr., Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings, J. Math. Anal. Appl. 43 (1973), 459–497. MR 326510, DOI 10.1016/0022-247X(73)90087-5 F. Tricomi, Un teorema sulla convergenza delle successioni formate delle successive iterate di una funzione di una variabile reale, Giorn. Mat. Battaglini 54 (1916), 1-9.
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 62 (1977), 119-123
- MSC: Primary 65H05
- DOI: https://doi.org/10.1090/S0002-9939-1977-0455354-4
- MathSciNet review: 0455354