ASYMPTOTIC NONBASES WHICH ARE NOT SUBSETS OF MAXIMAL ASYMPTOTIC NONBASES

JULIEN HENNEFELD

Abstract. Let A be a set of positive integers. If all but a finite number of the positive integers can be written as a sum of h elements of A, then A is called an asymptotic basis of order h. Otherwise, A is called an asymptotic nonbasis of order h. For each $h \geq 2$, we construct an asymptotic nonbasis of order h which is not a subset of a maximal asymptotic nonbasis of order h.

For A, a set of positive integers, let hA denote the set of all sums of h not necessarily distinct elements of A. If hA contains all but finitely many of the positive integers, then A is an asymptotic basis of order h. If A is an asymptotic nonbasis of order h, but $A \cup \{a\}$ is an asymptotic basis of order h for every positive integer $a \in A$, then A is called a maximal asymptotic nonbasis of order h.

The question of whether every asymptotic nonbasis of order h is a subset of some maximal asymptotic nonbasis of order h was originally posed by Nathanson [3] and repeated by Erdös and Nathanson [1], [2].

Theorem. For $h \geq 2$, let $A = \{1\} \cup \{h\} \cup \{\text{all multiples of } h, \text{ except } q_1, q_2, q_3, \ldots\}$, where $\{q_i\}$ is an increasing sequence of multiples of h, with $\lim(q_{i+1} - q_i) = \infty$. Then A is an asymptotic nonbasis of order h which is not a subset of any maximal asymptotic nonbasis of order h.

Proof. To simplify the notation, we will only give the proof for $h \geq 3$. Clearly, since 1 is the only element of A not congruent to 0 (mod h), hA will miss all integers of the form $q_i + h - 1$. Also, note that all but finitely many of the integers that hA misses are of the form $q_i + h - 1$. This is because for all i sufficiently large,

$$q_i + h - 2 = (q_i - h) + h + 1 + \cdots + 1$$

is the sum of h elements of A. Also,

$$q_i + h - 3 = (q_i - 2h) + h + h + 1 + \cdots + 1$$
is the sum of \(h \) elements of \(A \). Similarly, all integers in \([q_i, q_i + h - 2] \) have representations as sums of \(h \) elements in \(A \). Every integer in \([q_i + h, q_{i+1}] \) is in \(hA \) for \(i \) sufficiently large, because each \(q_i + rh \) in \((q_i, q_{i+1}) \) can be expressed as a sum of \(j \) elements from \(A \) for each \(j \) in \([1, h]\).

We claim that if \(x \) is any integer greater than 1, which is not congruent to 0 (mod \(h \)), then \(A \cup \{x\} \) is an asymptotic basis of order \(h \). To prove this claim we will consider separately the two cases: \(x \equiv 1 \) (mod \(h \)) and \(x \not\equiv 1 \) (mod \(h \)).

If \(x \equiv 1 \) (mod \(h \)), then for all \(i \) sufficiently large,

\[
q_i + 1 = x + [q_i - (x - 1)]
\]

is the sum of two elements of \(A \cup \{x\} \), and thus by \(h - 2 \) additions of 1, \(q_i + h - 1 \) will be the sum of \(h \) elements of \(A \cup \{x\} \).

If \(x \not\equiv 1 \) (mod \(h \)), take \(m \) large enough so that \(hx < q_i - q_{i-1} \), for all \(i \geq m \). Pick \(p \): \(ph < x < (p + 1)h \). Then \(q_i + 1 < (q_i - ph) + x < q_i + h \). Since \((q_i - ph) + x \) is the sum of two elements from \(A \cup \{x\} \), \(q_i + h - 1 \) can be expressed as a sum of fewer than \(h \) elements of \(A \cup \{x\} \). To express it as a sum of exactly \(h \) elements, use an expression of the form

\[
[q_i - (p + r)h] + x + h + \cdots + h + 1 + \cdots + 1.
\]

Thus the claim is proved.

Therefore, the only hope for extending \(A \) to a maximal asymptotic nonbasis is by adjoining \(B \), a subset of \(\{q_1, q_2, \ldots\} \). However, if there are infinitely many \(q_i \) missing from \(B \), then \(A \cup B \) will be a nonbasis which is not maximal. If there are only finitely many \(q_i \) missing from \(B \), then \(A \cup B \) will be a basis. In neither case will \(A \cup B \) be a maximal nonbasis.

Remark. The author originally constructed the example \(A = \{1\} \cup \{\text{all multiples of } h, \text{except } h^2, h^3, h^4, \ldots\} \) and wishes to thank M. B. Nathanson for pointing out the somewhat more general example given in this paper.

References

DEPARTMENT OF MATHEMATICS, BROOKLYN COLLEGE, CUNY, BROOKLYN, NEW YORK 11210