CONFORMAL INVARIANTS OF SUBMANIFOLDS
CHUAN-CHIH HSIUNG and LARRY R. MUGRIDGE

Abstract. A local conformal invariant and a global conformal invariant of a submanifold immersed in a Euclidean space are derived.

1. Introduction. It is well known (Haantjes [3]) that every conformal mapping \(f \) on a Euclidean \(m \)-space \(E^m \) can be decomposed into a product of similarity transformations (i.e., Euclidean motions and homotheties) and inversions \(\{ \pi_i \} \). Let \(x: M^n \to E^m \) be an \(n \)-dimensional submanifold immersed in \(E^m \). For simplicity we shall write \(x(M^n) \) as \(M^n \). A quantity on \(M^n \) is a conformal invariant if it is invariant under the conformal mappings of \(E^m \), for which the center of every inversion does not lie on \(M^n \).

Let \(e \) be a unit normal vector of \(M^n \) at a point \(x \). Then the first fundamental form of \(M^n \) at \(x \) and the second fundamental form of \(M^n \) at \(x \) with respect to \(e \) are respectively defined to be

\[
I = dx \cdot dx, \quad II(e) = -dx \cdot de,
\]

where \(dx \) and \(de \) are vector-valued linear forms on \(M^n \), and the dot denotes the inner product of two vectors in \(E^m \); actually the form \(I \) is the Riemannian metric on \(M^n \) induced by the immersion. The eigenvalues \(h_1(e), \ldots, h_n(e) \) of \(II(e) \) relative to \(I \) are called the principal curvatures of \(M^n \) at the point \(x \) with respect to \(e \), and the \(r \)th mean curvature of \(M^n \) at \(x \) with respect to \(e \) is defined to be the \(r \)th elementary symmetric function of \(h_1(e), \ldots, h_n(e) \) divided by the number of terms, i.e.,

\[
H_r(e) = \frac{1}{\binom{n}{r}} \sum_{i_1, \ldots, i_r=1}^{n} h_{i_1}(e) \cdots h_{i_r}(e), \quad r = 1, \ldots, n,
\]

where \(\binom{n}{r} \) is the binomial coefficient.

Let \(B \) be the bundle of unit normal vectors of \(M^n \), so that a point of \(B \) is a pair \((x, e) \). Then \(B \) is a bundle of \((m-n-1) \)-dimensional spheres \(S^{m-n-1} \) of unit normal vectors over \(M^n \) and is a manifold of dimension \(m - 1 \). Let \(dV_n \) and \(d\sigma_{m-n-1} \) be the volume elements of \(M^n \) and \(S^{m-n-1} \) at a point \(x \) respectively.

The purpose of this paper is to establish the following theorem.

Theorem.
CONFORMAL INVARIANTS OF SUBMANIFOLDS

(1.3) \[K := \left(\int_{S^{m-n-1}} \left[H_1(e)^2 - H_2(e) \right]^{n/2} \, d\sigma_{m-n-1} \right) dV_n \]
is a local conformal invariant of the submanifold \(M^n \) immersed in \(E^m \), and

(1.4) \[\int_{M^n} K \]
is a global conformal invariant of a compact oriented \(M^n \) in \(E^m \).

This Theorem is due to W. Blaschke [1] for \(m = 3, n = 2 \), and due to B. Y. Chen [2] for \(n = 2 \) and a general \(m \). Moreover, for a compact oriented \(M^2 \), by using the well-known Gauss-Bonnet formula from (1.4), it follows that \(\int_{M^2} H_1^2 \, dV_2 \) is a global conformal invariant (J. H. White [4], B. Y. Chen [2]).

2. Proof of the Theorem. It is obvious that \(K \) is invariant under similarity transformations, so that it suffices to show that \(K \) is invariant under an inversion \(\pi \) on \(E^m \), whose center does not lie on the submanifold \(M^n \).

Choose the center of the inversion \(\pi \) to be the origin of a coordinate system in the Euclidean space \(E^m \), and let \(x, \tilde{x} \) be the position vectors of a pair of corresponding points of the submanifold \(M^n \) and its image submanifold \(\tilde{M}^n \) under \(\pi \). Then the definition of an inversion implies

(2.1) \[\tilde{x} = (c^2r^{-2})x, \quad r^2 = x \cdot x, \]
where \(c \) is the radius of the inversion \(\pi \). By (2.1) we readily obtain

(2.2) \[d\tilde{x} = (c^2r^{-2})dx - 2(c^2r^{-3}dr)x, \]

(2.3) \[d\tilde{x} \cdot dx = (c^4r^{-4})dx \cdot dx. \]

Let \(e_{n+1}, \ldots, e_m \) be any \(m - n \) mutually orthogonal unit normal vectors of \(M^n \) at \(x \). Then from (2.2) it is easy to see that

(2.4) \[\tilde{e}_\alpha = 2r^{-2}(x \cdot e_\alpha)x - e_\alpha, \quad \alpha = n + 1, \ldots, m, \]
are \(m - n \) mutually orthogonal unit normal vectors of \(\tilde{M}^n \) at \(\tilde{x} \). Similarly, if \(e \) is a general unit normal vector of \(M^n \) at \(x \), then

(2.5) \[\tilde{e} = 2r^{-2}(x \cdot e)x - e \]
is a unit normal vector of \(\tilde{M}^n \) at \(\tilde{x} \). Since \(e \) can be written as

(2.6) \[e = \sum_{\alpha=n+1}^{m} a_\alpha e_\alpha, \quad \sum_{\alpha=n+1}^{m} a_\alpha^2 = 1, \]
we have

(2.7) \[\tilde{e} = \sum_{\alpha=n+1}^{m} a_\alpha \tilde{e}_\alpha. \]

Thus, if the vector \(e \) moves over the sphere \(S^{m-n-1} \) of \(M^n \) at \(x \), then the vector \(\tilde{e} \) moves over the \((m - n - 1)\)-dimensional sphere \(\tilde{S}^{m-n-1} \) of unit normal vectors of \(\tilde{M}^n \) at \(\tilde{x} \).

By means of (2.2) and (2.5) we obtain
(2.8) \[d\mathbf{x} \cdot d\mathbf{e} = 2c^2r^{-4}(x \cdot e)dx \cdot dx - (c^2r^{-2})dx \cdot de, \]
and therefore, in consequence of (2.3),

(2.9) \[d\mathbf{x} \cdot d\mathbf{e} + \lambda d\mathbf{x} \cdot d\mathbf{x} = -\frac{c^2}{r^2} \left[dx \cdot de + \left(-\frac{2(x \cdot e)}{r^2} - \lambda \frac{c^2}{r^2} \right) dx \cdot dx \right]. \]

Let \(d\vec{V}_n \) be the volume element of the submanifold \(\overline{M}^n \) at a point \(\vec{x} \), and \(h_1(\vec{e}), \ldots, h_n(\vec{e}) \) be the principal curvatures of \(\overline{M}^n \) at \(\vec{x} \) with respect to \(\vec{e} \). From (2.3), (2.9) and (1.1) it follows that

(2.10) \[d\vec{V}_n = (c/r)^2 n dV_n, \]

(2.11) \[h_i(\vec{e}) = -c^{-2}r^2h_i(e) - 2c^{-2}(x \cdot e), \quad i = 1, \ldots, n. \]

Thus by (1.2) and its corresponding equation for \(\overline{M}^n \) we have

(2.12) \[\overline{H}_1(\vec{e}) = -c^{-2}r^2H_1(e) - 2c^{-2}(x \cdot e), \]

(2.13) \[\overline{H}_2(\vec{e}) = c^{-4}r^4H_2(e) + 4c^{-4}r^2(x \cdot e)H_1(e) + 4c^{-4}(x \cdot e)^2, \]

which, together with (2.10), immediately imply

(2.14) \[\left[\overline{H}_1(\vec{e})^2 - \overline{H}_2(\vec{e}) \right]^{n/2} d\vec{V}_n = \left[H_1(e)^2 - H_2(e) \right]^{n/2} dV_n. \]

Integrating both sides of (2.14) and using (1.3) we obtain

(2.15) \[\overline{K} = K, \]

where \(\overline{K} \) is defined by

(2.16) \[\overline{K} = \left\{ \int_{S^{m-n-1}} \left[H_1(e)^2 - H_2(e) \right]^{n/2} d\sigma_{m-n-1} \right\} dV_n, \]

\(d\sigma_{m-n-1} \) being the volume element of \(S^{m-n-1} \) at \(x \). If \(M^n \) is compact and oriented, then by integrating both sides of (2.15) over \(M^n \) we have

(2.17) \[\int_{M^n} \overline{K} = \int_{M^n} K. \]

Hence our Theorem is proved.

It should be noted that a hypersphere of \(E^m \) has vanishing invariant \(K \) since the principal curvature \(h_1(e), \ldots, h_n(e) \) of the hypersphere with respect to the unique unit normal vector \(e \) at every point \(x \) is equal.

REFERENCES

DEPARTMENT OF MATHEMATICS, LEHIGH UNIVERSITY, BETHLEHEM, PENNSYLVANIA 18015
DEPARTMENT OF MATHEMATICS, KUTZTOWN STATE COLLEGE, KUTZTOWN, PENNSYLVANIA 19530

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use