THE SUM OF THE RECIPROCALS
OF A SET OF INTEGERS WITH
NO ARITHMETIC PROGRESSION OF k TERMS

JOSEPH L. GERVER

Abstract. It is shown that for each integer $k > 3$, there exists a set S_k of positive integers containing no arithmetic progression of k terms, such that $\sum_{n \in S_k} 1/n > (1 - \epsilon)k \log k$, with a finite number of exceptional k for each real $\epsilon > 0$. This result is shown to be superior to that attainable with other sets in the literature, in particular Rankin's sets $d(k)$, which have the highest known asymptotic density for sets of positive integers containing no arithmetic progression of k terms.

Let S_k be any set of positive integers which contains no arithmetic progression of k terms. Erdös and Davenport [1] proved that for any such S_k,

$$\liminf_{n \to \infty} \frac{|S_k \cap [1, n]|}{n} = 0,$$

where $|X|$ denotes the cardinality of X, and $[1, n]$ the set of integers from 1 to n inclusive. More recently, Szemerédi [2] proved that

$$\lim_{n \to \infty} \frac{|S_k \cap [1, n]|}{n} = 0.$$

On the other hand, it has been shown by Behrend [3] and Moser [4] in the case $k = 3$, and by Rankin [5] for all $k > 3$, that there exist sets S_k, with no arithmetic progression of k terms, such that, for all positive integers n,

$$|S_k \cap [1, n]| > n \exp\left[-c(\log n)^b\right]$$

where b and c are positive numbers which depend on k but not on n.

These results have led Erdös [6] to conjecture that $\sum_{n \in S_k} 1/n$ must converge. If this conjecture is true, then for each $k > 3$, there exists

$$A_k = \sup\sum_{n \in S_k} 1/n.$$

For suppose A_k did not exist for some k. Let $S_k(1)$ be any set of positive integers containing no arithmetic progression of k terms, and, for each integer $m > 1$, let $a_k(m)$ be the least integer such that

Received by the editors March 22, 1976.

Key words and phrases. Arithmetic progression, sum of reciprocals, asymptotic density, Szemerédi's theorem, Rankin's sets.

1The above research was supported in part by a NATO postdoctoral fellowship and in part by a grant of one hundred francs from Paul Erdös, who also kindly provided me with some references to previous work in this field.

© American Mathematical Society 1977

211
and let $S_k(m+1)$ be any set of positive integers with no arithmetic progression of k terms such that

$$\sum_{n \in S_k(m+1)} \frac{1}{n} \geq \sum_{n \in S_k(m)} \left(\frac{1}{n} - 1 \right)$$

Then $U_{k+1} = \bigcup_{m=1}^{\infty} S_k(m) \cap [1, a_k(m)]$ has no arithmetic progression of $k+1$ terms, yet $\sum_{n \in U_{k+1}} 1/n$ diverges.

When Erdös made this conjecture, the best lower bound known to him for A_k was $\frac{1}{2} k \log 2$, based on the theorem that 2^k consecutive integers can be partitioned into two sets, neither of which contains an arithmetic progression of k terms [7]. We will prove here that $A_k > (1 - \varepsilon)k \log k$, for every $\varepsilon > 0$, with a finite number of exceptional k for each ε.

Theorem. For every $\varepsilon > 0$, there exist, for all but a finite number of integers $k > 3$, sets S_k of positive integers, containing no arithmetic progression of k terms, such that $\sum_{n \in S_k} 1/n > (1 - \varepsilon)k \log k$.

Proof. Let Z^+ be the set of positive integers. For any prime p, let

$$S_p = Z^+ - \{ n : \exists i, j \in Z^+, jp^i - p^{i-1} + 1 \leq n \leq jp^i \}.$$

Then S_p contains no integers divisible by p, so by the Chinese remainder theorem, it contains no arithmetic progression with p terms, provided the intervals between the terms are not divisible by p. For any positive integers i and m, such that $m < p^i$, we have $S_p \cap \{ n : n \equiv m \mod p^i \}$ equal to $\{ p^i(n - 1) + m : n \in S_p \}$ if m is an element of S_p, and equal to the null set if m is not an element of S_p. Therefore, one can prove, by induction on i, that S_p contains no arithmetic progression with p terms even if the intervals are divisible by p. Now

$$\sum_{n \in S_p} \frac{1}{n} > 1 + \sum_{i=0}^{\infty} \left(\frac{p - 1}{p} \right)^i \sum_{n=p^{i+1}}^{p^{i+1} - 1} \frac{1}{n}.$$

But

$$\sum_{n=p^{i+1}}^{p^{i+1} - 1} \frac{1}{n} = \sum_{n=p^i}^{p^i - 1} \frac{1}{n} - \sum_{n=p^{i+1} - p^i + 1}^{p^{i+1} - 1} \frac{1}{n} > \log p - \frac{1}{p^i} \frac{1}{p - 1} = \frac{1}{p - 1},$$

so

$$\sum_{n \in S_p} \frac{1}{n} > 1 + \log p \sum_{i=0}^{\infty} \left(\frac{p - 1}{p} \right)^i - \frac{1}{p - 1} \sum_{i=0}^{\infty} \left(\frac{p - 1}{p} \right)^i - \frac{1}{p^2 - p + 1} > \log p \frac{2}{p - 1}.$$

By a theorem of Huxley [8], there always exists a prime between k and $k - k^{5/8}$. Therefore, if p is the greatest prime less than k then $\sum_{n \in S_p} 1/n >$
One might think that this result could be improved by using Rankin's sets. However, that is not the case, because Rankin's constant c depends so strongly on k. Indeed $c > \frac{1}{3} \sqrt{k} \log k$, and $b > \log 2/(\log k + \log 2)$. It is not difficult to show that if R_k is a set of positive integers, and

$$|R_k \cap [1, n]| < n \exp\left[-\frac{1}{3} \sqrt{k} \log k (\log n)^{\log 2/(\log k + \log 2)}\right]$$

for all n, then $\sum_{n \in R_k} 1/n$ is bounded from above by a constant which does not depend on k. For

$$\sum_{n \in R_k} 1/n < 1 + \int_1^\infty x^{-1} \exp\left[-\frac{1}{3} \sqrt{k} (\log k) u^{\log 2/(\log k + \log 2)}\right] du$$

$$= 1 + \int_0^\infty \exp\left[-\frac{1}{3} \sqrt{k} \log k \left(u^{\log 2/(\log k + \log 2)}\right) \right] du$$

But $\int_0^\infty \exp\left[-u^{\log 2/(\log k + \log 2)}\right] du < 1$, and

$$\int_1^\infty \exp\left[-u^{\log 2/(\log k + \log 2)}\right] du < \int_1^\infty \exp\left[-2 \log u + a\right] du = e^a,$$

where a is a constant, depending only on k. We can solve for a by finding the maximum value of $2 \log u - u^{\log 2/(\log k + \log 2)}$. It turns out that

$$a = \frac{2(\log k + \log 2)}{\log 2} \left[\log \left(\frac{\log k + \log 2}{\log 2}\right) + \log 2 - 1 \right].$$

Therefore,

$$\sum_{n \in R_k} 1/n < 1 + \left(\frac{1}{3} \sqrt{k} \log k\right)^{-(\log k + \log 2)/\log 2}$$

$$+ \left[\frac{1}{12} \sqrt{k} (\log k) e^{2 \left(\frac{\log 2}{\log k + \log 2}\right)^2}\right]^{-(\log k + \log 2)/\log 2}.$$
with $S_p \cap [1, n - 1]$ contains no arithmetic progression of p terms. This is a poor way to construct sets with high asymptotic density, since no account is taken of the possibility that by omitting an element at some point, it might be possible to include two extra elements later. In the case of sets S_k with high $\sum_{n \in S_k} 1/n$, however, there is a heavy penalty for postponing the inclusion of an element, so the set S_p defined above may indeed be maximal when k is prime. Indeed, I have been unable to improve on it even marginally. Clearly this set does maximize $\sum_{n \in S_p} 1/2^n$, over all S_p, and it might be possible to extend this result to $\sum_{n \in S_p} f(n)$ for other $f(n)$, even if not to $\sum_{n \in S_p} 1/n$. If one could prove that $\sum_{n \in S_p} 1/n \log \log n$ always converges, then this would suffice to show that the primes contain arithmetic progressions with an arbitrary number of terms.

REFERENCES

MATHEMATIQUES, BATIMENT 425, UNIVERSITE DE PARIS-SUD, 91405 ORSAY, FRANCE

Current address: Department of Mathematics, University of Hawaii, Honolulu, Hawaii 96822