Rational singularities of higher dimensional schemes
HTML articles powered by AMS MathViewer
- by Eckart Viehweg
- Proc. Amer. Math. Soc. 63 (1977), 6-8
- DOI: https://doi.org/10.1090/S0002-9939-1977-0432637-5
- PDF | Request permission
Abstract:
Two examples of rational singularities of schemes over an algebraically closed field of characteristic zero are given: Singularities occurring as the quotient of a regular scheme by a finite group and singularities of the type ${u^2} - {v^2} - g({t_1}, \ldots ,{t_N})$.References
- Allen Altman B., Raymond T. Hoobler, and Steven L. Kleiman, A note on the base change map for cohomology, Compositio Math. 27 (1973), 25–38. MR 337971
- Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; 79 (1964), 205–326. MR 0199184, DOI 10.2307/1970547
- G. Kempf, Finn Faye Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, Berlin-New York, 1973. MR 0335518
- Herbert Popp, Fundamentalgruppen algebraischer Mannigfaltigkeiten, Lecture Notes in Mathematics, Vol. 176, Springer-Verlag, Berlin-New York, 1970 (German). MR 0277540
- Eckart Viehweg, Canonical divisors and the additivity of the Kodaira dimension for morphisms of relative dimension one, Compositio Math. 35 (1977), no. 2, 197–223. MR 569690
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 63 (1977), 6-8
- MSC: Primary 14B05
- DOI: https://doi.org/10.1090/S0002-9939-1977-0432637-5
- MathSciNet review: 0432637