On the normal spectrum of a subnormal operator
Authors:
J. W. Bunce and J. A. Deddens
Journal:
Proc. Amer. Math. Soc. 63 (1977), 107-110
MSC:
Primary 47B20; Secondary 46L05
DOI:
https://doi.org/10.1090/S0002-9939-1977-0435912-3
MathSciNet review:
0435912
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this note we present a new characterization for subnormality which is purely -algebraic. We also establish an intrinsic characterization of the normal spectrum for a subnormal operator, which enables us to prove that
for any
-representation
.
- [1] M. B. Abrahamse and R. G. Douglas, A class of subnormal operators related to multiply-connected domains, Advances in Math. 19 (1976), no. 1, 106–148. MR 397468, https://doi.org/10.1016/0001-8708(76)90023-2
- [2] Joseph Bram, Subnormal operators, Duke Math. J. 22 (1955), 75–94. MR 68129
- [3] R. Gellar and L. J. Wallen, Subnormal weighted shifts and the Halmos-Bram criterion, Proc. Japan Acad. 46 (1970), 375–378. MR 372672
- [4] Paul R. Halmos, Normal dilations and extensions of operators, Summa Brasil. Math. 2 (1950), 125–134. MR 44036
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B20, 46L05
Retrieve articles in all journals with MSC: 47B20, 46L05
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1977-0435912-3
Keywords:
Subnormal operator,
normal spectrum,
-algebra
Article copyright:
© Copyright 1977
American Mathematical Society