On the normal spectrum of a subnormal operator
HTML articles powered by AMS MathViewer
- by J. W. Bunce and J. A. Deddens
- Proc. Amer. Math. Soc. 63 (1977), 107-110
- DOI: https://doi.org/10.1090/S0002-9939-1977-0435912-3
- PDF | Request permission
Abstract:
In this note we present a new characterization for subnormality which is purely ${C^ \ast }$-algebraic. We also establish an intrinsic characterization of the normal spectrum for a subnormal operator, which enables us to prove that ${\sigma _ \bot }(\pi (S)) \subseteq {\sigma _ \bot }(S)$ for any $^ \ast$-representation $\pi$.References
- M. B. Abrahamse and R. G. Douglas, A class of subnormal operators related to multiply-connected domains, Advances in Math. 19 (1976), no. 1, 106–148. MR 397468, DOI 10.1016/0001-8708(76)90023-2
- Joseph Bram, Subnormal operators, Duke Math. J. 22 (1955), 75–94. MR 68129
- R. Gellar and L. J. Wallen, Subnormal weighted shifts and the Halmos-Bram criterion, Proc. Japan Acad. 46 (1970), 375–378. MR 372672
- Paul R. Halmos, Normal dilations and extensions of operators, Summa Brasil. Math. 2 (1950), 125–134. MR 44036
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 63 (1977), 107-110
- MSC: Primary 47B20; Secondary 46L05
- DOI: https://doi.org/10.1090/S0002-9939-1977-0435912-3
- MathSciNet review: 0435912