$F$-spaces universal with respect to linear codimension
HTML articles powered by AMS MathViewer
- by Wesley E. Terry
- Proc. Amer. Math. Soc. 63 (1977), 59-65
- DOI: https://doi.org/10.1090/S0002-9939-1977-0442627-4
- PDF | Request permission
Abstract:
Rolewicz raised the question in [5] as to whether there existed a separable F-space ${X_0}$ such that any other separable F-space Y is the image of ${X_0}$ under a continuous linear operator. This can be equivalently phrased as the question [5, Problem II.4.3, p. 47]: Does there exist a separable F-space universal for all separable F-spaces with respect to linear codimension? Theorem 1 proves the existence of such a separable F-space. Theorem 2 generalizes this idea to larger cardinals.References
- S. Banach and S. Mazur, Zur Theorie der linearen Dimension, Studia Math. 4 (1933), 100-112.
- C. Bessaga, On topological classification of complete linear metric spaces, Fund. Math. 56 (1964/65), 251–288. MR 178322, DOI 10.4064/fm-56-3-250-288 M. Eidelheit and S. Mazur, Eine Bemerkung über die Räume vom typus (F), Studia Math. 7 (1938), 159-161.
- V. Klee, Mappings into normed linear spaces, Fund. Math. 49 (1960/61), 25–34. MR 126690, DOI 10.4064/fm-49-1-25-34
- Stefan Rolewicz, Metric linear spaces, 2nd ed., PWN—Polish Scientific Publishers, Warsaw; D. Reidel Publishing Co., Dordrecht, 1984. MR 802450
- Wesley E. Terry, Conditions for a TVS to be homeomorphic with its countable product, Trans. Amer. Math. Soc. 190 (1974), 233–242. MR 338725, DOI 10.1090/S0002-9947-1974-0338725-8
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 63 (1977), 59-65
- MSC: Primary 46A15
- DOI: https://doi.org/10.1090/S0002-9939-1977-0442627-4
- MathSciNet review: 0442627