Curvature forms for Lorentz $2$-manifolds
HTML articles powered by AMS MathViewer
- by John T. Burns
- Proc. Amer. Math. Soc. 63 (1977), 134-136
- DOI: https://doi.org/10.1090/S0002-9939-1977-0470916-6
- PDF | Request permission
Abstract:
As a converse to the Gauss-Bonnet theorem for Lorentz metrics on 2-manifolds, we show that if $\bar \Omega$ is a 2-form on the torus ${T^2}$ and ${\smallint _{{T^2}}}\bar \Omega = 0$ then $\bar \Omega$ is the curvature form of some Lorentz metric on ${T^2}$.References
- André Avez, Formule de Gauss-Bonnet-Chern en métrique de signature quelconque, C. R. Acad. Sci. Paris 255 (1962), 2049–2051 (French). MR 145462
- André Avez, Essais de géométrie riemannienne hyperbolique globale. Applications à la relativité générale, Ann. Inst. Fourier (Grenoble) 13 (1963), no. fasc. 2, 105–190 (French). MR 167940
- Shiing-shen Chern, Pseudo-Riemannian geometry and the Gauss-Bonnet formula, An. Acad. Brasil. Ci. 35 (1963), 17–26. MR 155261
- Harley Flanders, Differential forms with applications to the physical sciences, Academic Press, New York-London, 1963. MR 0162198
- N. R. Wallach and F. W. Warner, Curvature forms for 2-manifolds, Proc. Amer. Math. Soc. 25 (1970), 712–713. MR 262976, DOI 10.1090/S0002-9939-1970-0262976-6
- Frank W. Warner, Foundations of differentiable manifolds and Lie groups, Scott, Foresman & Co., Glenview, Ill.-London, 1971. MR 0295244 J. Wolf, Spaces of constant curvature, 2nd ed., 1972 (published by and available from the author).
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 63 (1977), 134-136
- MSC: Primary 53C50
- DOI: https://doi.org/10.1090/S0002-9939-1977-0470916-6
- MathSciNet review: 0470916