A simple proof of Ramanujan’s $_{1}\psi _{1}$ sum
HTML articles powered by AMS MathViewer
- by Mourad E. H. Ismail
- Proc. Amer. Math. Soc. 63 (1977), 185-186
- DOI: https://doi.org/10.1090/S0002-9939-1977-0508183-7
- PDF | Request permission
Abstract:
We give a simple proof of the $_1{\psi _1}$ sum using basic hypergeometric functions.References
- George E. Andrews, On Ramanujan’s summation of $_{1}\psi _{1}(a;\,b;\,z)$, Proc. Amer. Math. Soc. 22 (1969), 552–553. MR 241703, DOI 10.1090/S0002-9939-1969-0241703-4
- George E. Andrews, On a transformation of bilateral series with applications, Proc. Amer. Math. Soc. 25 (1970), 554–558. MR 257413, DOI 10.1090/S0002-9939-1970-0257413-1
- George E. Andrews, Number theory, W. B. Saunders Co., Philadelphia, Pa.-London-Toronto, Ont., 1971. MR 0309838 G. E. Andrews and R. A. Askey, A simple proof of Ramanujan’s summation of the $_1{\psi _1}$, MRC Tech. Rep. #1669, 1976 (to appear).
- Wolfgang Hahn, Beiträge zur Theorie der Heineschen Reihen. Die $24$ Integrale der Hypergeometrischen $q$-Differenzengleichung. Das $q$-Analogon der Laplace-Transformation, Math. Nachr. 2 (1949), 340–379 (German). MR 35344, DOI 10.1002/mana.19490020604
- M. Jackson, On Lerch’s transcendant and the basic bilateral hypergeometric series ${}_2\Psi _2$, J. London Math. Soc. 25 (1950), 189–196. MR 36882, DOI 10.1112/jlms/s1-25.3.189
- Lucy Joan Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966. MR 0201688
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 63 (1977), 185-186
- MSC: Primary 33A30; Secondary 10A45
- DOI: https://doi.org/10.1090/S0002-9939-1977-0508183-7
- MathSciNet review: 0508183