On the heights of group characters
HTML articles powered by AMS MathViewer
- by R. J. Haggarty
- Proc. Amer. Math. Soc. 63 (1977), 213-216
- DOI: https://doi.org/10.1090/S0002-9939-1977-0435199-1
- PDF | Request permission
Abstract:
For a finite p-soluble group G we derive a bound on the heights of the irreducible complex characters of G lying in a p-block B. This bound depends on the prime p and the exponent d of a defect group of B. We show by examples that this bound is of the right order of magnitude.References
- Richard Brauer, Some applications of the theory of blocks of characters of finite groups. IV, J. Algebra 17 (1971), 489–521. MR 281806, DOI 10.1016/0021-8693(71)90006-8
- Richard Brauer and Walter Feit, On the number of irreducible characters of finite groups in a given block, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 361–365. MR 106246, DOI 10.1073/pnas.45.3.361
- Paul Fong, Some properties of characters of finite solvable groups, Bull. Amer. Math. Soc. 66 (1960), 116–117. MR 111794, DOI 10.1090/S0002-9904-1960-10422-3
- P. Fong, On the characters of $p$-solvable groups, Trans. Amer. Math. Soc. 98 (1961), 263–284. MR 120297, DOI 10.1090/S0002-9947-1961-0120297-5
- P. Hall and Graham Higman, On the $p$-length of $p$-soluble groups and reduction theorems for Burnside’s problem, Proc. London Math. Soc. (3) 6 (1956), 1–42. MR 72872, DOI 10.1112/plms/s3-6.1.1
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703 —, Linear auflösbare Gruppen, Math. Z. 67 (1957), 479-518. MR 19, 729.
- David L. Winter, $p$-solvable linear groups of finite order, Trans. Amer. Math. Soc. 157 (1971), 155–160. MR 276345, DOI 10.1090/S0002-9947-1971-0276345-1
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 63 (1977), 213-216
- MSC: Primary 20C20
- DOI: https://doi.org/10.1090/S0002-9939-1977-0435199-1
- MathSciNet review: 0435199