ORIENTABLE LINE-ELEMENT PARALLELIZABLE MANIFOLDS

R. MICHAEL ALLISTON

Abstract. Examples of oriented, nonbounding, line-element parallelizable manifolds are given in all odd dimensions \(n \neq 5 \) or \(2^r - 1 \). Furthermore, these examples are indecomposable in the unoriented bordism ring, and hence represent generators of \(\text{Tor} \, \Omega_* \), the torsion subgroup of the oriented bordism ring. It is also proven that every class of \(\text{Tor} \, \Omega_* \) admits a representative \(M \) such that \(\tau(M) \oplus 2 \) splits as a sum of line bundles over \(M \).

1. Introduction. Massey and Szczarba [6] introduced the concept of a line-element parallelizable manifold, i.e. a manifold \(M \) whose tangent bundle \(\tau(M) \) is a Whitney sum of line bundles. They constructed an oriented 4-manifold which is line-element parallelizable, but not parallelizable. However, their example, being a sphere bundle, bounds. Iberkleid [5] has exhibited many nonbounding line-element parallelizable manifolds, all of which are unorientable. Here we answer a question he posed by producing oriented line-element parallelizable manifolds which are indecomposable generators of the unoriented bordism ring \(\Omega_* \) in all odd dimensions not equal to 5 or \(2^r - 1 \).

We note that every oriented line-element parallelizable manifold belongs to \(\text{Tor} \, \Omega_* \), the torsion subgroup of the oriented bordism ring. Although we are unable to show that all classes in \(\text{Tor} \, \Omega_* \) are so represented, we do show that each \(\alpha \) in \(\text{Tor} \, \Omega_* \) is represented by a manifold \(M \) with \(\tau(M) \oplus 2 \) being a sum of line bundles.

These results form a portion of the author's dissertation, University of Virginia, 1976.

2. Examples. For a vector bundle \(\xi \) over \(M \), let \(RP(\xi) \) denote the associated real projective space bundle. Let \(RP(n_1, \ldots, n_i) = RP(\lambda_1 \oplus \cdots \oplus \lambda_i) \), where \(\lambda_i \) is the pullback over \(RP(n_1) \times \cdots \times RP(n_i) \) of the canonical line bundle over \(RP(n_i) \).

Following Iberkleid [5], for \(n \neq 2^r - 1 \), let \(X^n \) be given by:

(1) if \(n = 4s + 2, s \geq 0 \), then

Received by the editors August 20, 1976 and, in revised form, September 27, 1976.
AMS (MOS) subject classifications (1970). Primary 57D75; Secondary 57D25, 58A30.
Key words and phrases. Line-element parallelizable manifold.

© American Mathematical Society 1977
parallelizable manifolds

\[X^n = RP\left(0, 0, 0, 1, \ldots, 1\right) \]

(2) if \(n = 4s, s > 1 \), then

\[X^n = RP\left(0, 1, \ldots, 1\right) \]

(3) let \(\xi \) be the canonical line bundle over \(RP(0, 1) \); then

\[X^5 = RP(\xi \oplus 3) \]

(4) if \(n = 2^p(2q + 1) - 1, n \neq 5, p > 0, q > 0 \), then

\[X^n = RP\left(0, 1, \ldots, 1, 2^p\right) \]

These manifolds are indecomposable in \(\mathcal{R}_* \), and Iberkleid [5] shows that
(a) \(\tau(X^n) \) is a sum of line bundles if \(n \leq 2 \), and
(b) if \(n \leq 5 \), at least one of the summands in \(\tau(X^n) \) is trivial, often more than one is trivial.

He also gives the following

Lemma 2.1 [5]. Let \(\xi \) be a vector bundle over the closed manifold \(M \). If \(\xi \) and \(\tau(M) \) both split as sums of line bundles over \(M \) such that \(\tau(M) \) has \(n \) trivial summands, then \(\tau(RP(\xi)) \) splits as a sum of line bundles with \(n - 1 \) trivial summands.

Lemma 2.2. If \(n \neq 2 \) or 5 and \(t \) is chosen so that \(n + t \) is even, then \(RP(\tau(X^n) \oplus t) \) is a closed, orientable, line-element parallelizable, \(2n + t - 1 \) dimensional manifold.

Proof. Line-element parallelizability follows immediately from Lemma 2.1 and properties (a) and (b). A formula of Borel and Hirzebruch [4, §23] shows that \(w_1(\tau(RP(\tau(X^n) \oplus t))) = (n + t)w_1(\lambda) \), where \(\lambda \) is the canonical line bundle over \(RP(\tau(X^n) \oplus t) \). □

Proposition 2.3. If \(n = 2s \neq 2 \), then \(RP(\tau(X^n) \oplus 2^r) \) is a closed, oriented, line-element parallelizable, \(2^{r+1}s + 2^r - 1 \) dimensional manifold which is indecomposable in \(\mathcal{R}_* \).

Proof. By Lemma 2.2, it suffices to show that the characteristic number
\[s_{2n+2r-1}[RP(\tau(X^n) \oplus 2^r)] \neq 0, \]
where \(s_i \) denotes the Stiefel-Whitney class detecting indecomposability. This follows at once from

Lemma 2.4. If \(M \) is a closed \(n \)-manifold, then

\[s_{2n+m}[RP(\tau(M) \oplus m \oplus 1)] = \left(n + m - 1 \right)s_n[M]. \]

The proof of this result is highly technical and we postpone it to §4. □
3. **Representing** $\text{Tor } \Omega_*$. Since every line-element parallelizable manifold has trivial rational Pontrjagin classes, any oriented such manifold represents a class in $\text{Tor } \Omega_*$. The examples given in Proposition 2.3 are indecomposable in $\text{Tor } \Omega_*$ since they are so in \mathcal{Y}_*, but they do not suffice to generate $\text{Tor } \Omega_*$.

Iberkleid [5, Theorem 2.2] shows that: Every manifold is unorientedly cobordant to a manifold M such that $\tau(M) \oplus 1$ splits as a sum of line bundles. Analogously, we have

Proposition 3.1. Every class in $\text{Tor } \Omega_*$ admits a representative M such that $\tau(M) \oplus 2$ splits as a sum of line bundles.

Proof. Anderson [1] shows that every class in $\text{Tor } \Omega_*$ can be represented as $\text{RP}(\det(\tau(N)) \oplus k)$, where $\det(\tau(N))$ is the orientation line bundle of N and k is odd. Furthermore, the class of $\text{RP}(\det(\tau(N)) \oplus k)$ in Ω_* depends only on the class of N in \mathcal{Y}_*. Iberkleid's result permits us to choose N so that $\tau(N) \oplus 1$ is a sum of line bundles.

Now $\tau(\text{RP}(\det(\tau(N)) \oplus k)) = p^*\tau(N) \oplus \theta$, where p is the projection and θ is the bundle along the fibers. Moreover, $\theta \oplus 1 = p^*(\det(\tau(N)) \oplus k) \otimes \lambda$, where λ is the canonical line bundle over $\text{RP}(\det(\tau(N)) \oplus k)$ [4, §32]. Thus, $\tau(\text{RP}(\det(\tau(N)) \oplus k)) \oplus 2$ is a sum of line bundles. □

Note. By Lemma 2.1, $\tau(\text{RP}(\tau(X) \oplus 2'))$ often has many trivial summands. Thus Proposition 3.1 allows many products in $\text{Tor } \Omega_*$ to be represented by line-element parallelizable manifolds.

4. **Proof of Lemma 2.4.** Let R be $\text{RP}(\tau(M) \oplus m \oplus 1)$, π the projection, and λ the canonical line bundle over R. If $c = w_i(\lambda)$, then $H^*(R; \mathbb{Z}_2)$ is a free $H^*(M; \mathbb{Z}_2)$ module on classes $1, c, \ldots, c^{n+m} \oplus w_n(M)$. With the single relation [4, §23]

$$c^{n+m+1} = c^{n+m}w_1(M) + \cdots + c^{m+1} \pi w_n(M).$$

Now $\tau(R) = \pi^*(\tau(M)) \oplus \pi^*(\tau(M) \oplus m \oplus 1) \otimes \lambda$, [4, §32]. If we formally represent the Stiefel-Whitney classes of M as elementary symmetric functions on one dimensional classes $\alpha_1, \ldots, \alpha_n$, then we have

$$(A) \quad s_{2n+m}(R) = \sum_{i=1}^{n} \alpha_i^{2n+m} + \sum_{i=1}^{n} (\alpha_i + c)^{2n+m} + (m + 1)c^{2n+m}.$$

The first indexed summation of (A) is zero as each $\alpha_i^{2n+m} = 0$ for dimensional reasons. The final summand vanishes also, for Conner [3, Lemma 3.1] shows that

$$(B) \quad c^{n+m+a} = c^{n+m}w_a(M) + \sum_{j=2}^{n+m+1} c^{n+m+1-j} \left(\sum_{i=0}^{a-1} \bar{w}_i(M)w_{a+j-i-1}(M) \right).$$

When $a = n$, any terms with $j > 1$ vanish for dimensional reasons, and as M immerses in R^{2n-1}, $\bar{w}_n(M) = 0$.

R. M. ALLISTON

350
Examining the second indexed summation of (A), we have
\[
\sum_{i=1}^{n} (\alpha_i + c)^{2n+m} = \sum_{a=0}^{2n+m} \left(\sum_{i=1}^{n} \alpha_i^{2n+m-a} \right) c^a
\]
\[
= \sum_{a=0}^{2n+m} \left(\sum_{i=1}^{n} \alpha_i^{2n+m-a} \right) s_{2n+m-a}(M) c^a.
\]
For reasons of dimension, terms with \(a < n + m \) vanish, and upon reindexing we have
\[
\sum_{a=0}^{n} \left(\frac{2n + m}{n - a} \right) s_{n-a}(M) c^{n+m+a}.
\]
Making the substitution at (B), all terms with \(j > 1 \) again vanish for dimensional reasons, and so (A) finally reduces to
\[
(C) \sum_{a=0}^{n-1} \left(\frac{2n + m}{n - a} \right) w_a(M) s_{n-a}(M) c^{n+m}.\]

Now
\[
\langle w_a(M) s_{n-a}(M) c^{n+m}; [R] \rangle = \langle \chi \text{Sq}^a(s_{n-a}(M)); [M] \rangle \langle c^{n+m}; [RP(n + m)] \rangle,
\]
where \(\chi \) is the conjugation in the Steenrod algebra. Using a formula of Adams [2, Lemma 4],
\[
\chi \text{Sq}^a(s_{n-a}(M)) = \left(\frac{2^q - n - 1}{a} \right) s_n(M),
\]
where \(q \) is arbitrarily large. Therefore evaluating (C) on \([R]\) gives
\[
\sum_{a=0}^{n-1} \left(\frac{2n + m}{n - a} \right) \left(\frac{2^q - n - 1}{a} \right).
\]
This number reduces as follows. The coefficient of \(x^{n-a} \) in \((1 + x)^{2n+m}\) is
\[
\left(\frac{2n + m}{n - a} \right),
\]
and the coefficient of \(x^a \) in \((1 + x)^{2q-n-1}\) is
\[
\left(\frac{2^q - n - 1}{a} \right).
\]
Thus the summation is equal to
\[
\left(\frac{2^q + n + m - 1}{n} \right) - \left(\frac{2n + m}{0} \right) \left(\frac{2^q - n - 1}{n} \right),
\]
which reduces modulo 2 to
\[
\left(\frac{n + m - 1}{n} \right). \quad \Box
\]
REFERENCES

DEPARTMENT OF MATHEMATICAL SCIENCES, NORTHERN ILLINOIS UNIVERSITY, DEKalB, ILLINOIS 60115