A canonical form for a class of ordinary differential operators
HTML articles powered by AMS MathViewer
- by Harold E. Benzinger
- Proc. Amer. Math. Soc. 63 (1977), 281-286
- DOI: https://doi.org/10.1090/S0002-9939-1977-0445053-7
- PDF | Request permission
Abstract:
A canonical form is developed for each member of a large class of nth order linear ordinary differential operators, acting on ${L^p}(0,1)$. This canonical form shows how the Fourier-like behavior of eigenfunction expansions is related to structural properties of the operators.References
- Harold E. Benzinger, Green’s function for ordinary differential operators, J. Differential Equations 7 (1970), 478–496. MR 262583, DOI 10.1016/0022-0396(70)90096-3
- Harold E. Benzinger, The $L^{p}$ behavior of eigenfunction expansions, Trans. Amer. Math. Soc. 174 (1972), 333–344 (1973). MR 328189, DOI 10.1090/S0002-9947-1972-0328189-0
- Harold E. Benzinger, Pointwise and norm convergence of a class of biorthogonal expansions, Trans. Amer. Math. Soc. 231 (1977), no. 1, 259–271. MR 442588, DOI 10.1090/S0002-9947-1977-0442588-2
- George D. Birkhoff, Boundary value and expansion problems of ordinary linear differential equations, Trans. Amer. Math. Soc. 9 (1908), no. 4, 373–395. MR 1500818, DOI 10.1090/S0002-9947-1908-1500818-6
- I. I. Hirschman Jr., On multiplier transformations, Duke Math. J. 26 (1959), 221–242. MR 104973
- Yitzhak Katznelson, An introduction to harmonic analysis, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0248482 M. A. Naĭmark, Linear differential operators, GITTL, Moscow, 1954; German transl., Akademie-Verlag, Berlin, 1960. MR 16, 702.
- M. H. Stone, A comparison of the series of Fourier and Birkhoff, Trans. Amer. Math. Soc. 28 (1926), no. 4, 695–761. MR 1501372, DOI 10.1090/S0002-9947-1926-1501372-6
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 63 (1977), 281-286
- MSC: Primary 34B25
- DOI: https://doi.org/10.1090/S0002-9939-1977-0445053-7
- MathSciNet review: 0445053