On certain weighted partitions and finite semisimple rings
HTML articles powered by AMS MathViewer
- by L. B. Richmond and M. V. Subbarao PDF
- Proc. Amer. Math. Soc. 64 (1977), 13-19 Request permission
Abstract:
Let k be a fixed integer $\geqslant 1$ and define ${\tau _k}(n) = {\Sigma _{{d^k}/n}}1$. Thus ${\tau _{1}}(n)$ is the ordinary divisor function and ${\tau _k}(n)$ is the number of kth powers dividing n. We derive the asymptotic behaviour as $n \to \infty$ of ${P_k}(n)$ defined by \[ \sum \limits _{n = 0}^\infty {{P_k}(n){x^n} = \prod \limits _{n = 1}^\infty {{{(1 - {x^n})}^{ - {\tau _k}(n)}}} .} \] Thus ${P_k}(n)$ is the number of partitions of n where we recognize ${\tau _k}(m)$ different colours of the integer m when it occurs as a summand in a partition. The case $k = 2$ is of special interest since the number $f(n)$ of semisimple rings with n elements when $n = q_1^{{l_1}}q_2^{{l_2}} \ldots$ is given by $f(n) = {P_2}({l_1}){P_2}({l_2}) \ldots$.References
- Ian G. Connell, A number theory problem concerning finite groups and rings, Canad. Math. Bull. 7 (1964), 23–34. MR 158927, DOI 10.4153/CMB-1964-002-1
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford, at the Clarendon Press, 1954. 3rd ed. MR 0067125
- Bruce Richmond, A general asymptotic result for partitions, Canadian J. Math. 27 (1975), no. 5, 1083–1091 (1976). MR 384731, DOI 10.4153/CJM-1975-113-5
- K. F. Roth and G. Szekeres, Some asymptotic formulae in the theory of partitions, Quart. J. Math. Oxford Ser. (2) 5 (1954), 241–259. MR 67913, DOI 10.1093/qmath/5.1.241
- John Knopfmacher, Arithmetical properties of finite rings and algebras, and analytic number theory, J. Reine Angew. Math. 252 (1972), 16–43. MR 313214, DOI 10.1515/crll.1972.252.16
- John Knopfmacher, Arithmetical properties of finite rings and algebras, and analytic number theory. IV. Relative asymptotic enumeration and $L$-series, J. Reine Angew. Math. 270 (1974), 97–114. MR 364134, DOI 10.1515/crll.1974.270.97
Additional Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 64 (1977), 13-19
- MSC: Primary 10J20
- DOI: https://doi.org/10.1090/S0002-9939-1977-0439789-1
- MathSciNet review: 0439789