On certain weighted partitions and finite semisimple rings

Authors:
L. B. Richmond and M. V. Subbarao

Journal:
Proc. Amer. Math. Soc. **64** (1977), 13-19

MSC:
Primary 10J20

DOI:
https://doi.org/10.1090/S0002-9939-1977-0439789-1

MathSciNet review:
0439789

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let *k* be a fixed integer $\geqslant 1$ and define ${\tau _k}(n) = {\Sigma _{{d^k}/n}}1$. Thus ${\tau _{1}}(n)$ is the ordinary divisor function and ${\tau _k}(n)$ is the number of *k*th powers dividing *n*. We derive the asymptotic behaviour as $n \to \infty$ of ${P_k}(n)$ defined by \[ \sum \limits _{n = 0}^\infty {{P_k}(n){x^n} = \prod \limits _{n = 1}^\infty {{{(1 - {x^n})}^{ - {\tau _k}(n)}}} .} \] Thus ${P_k}(n)$ is the number of partitions of *n* where we recognize ${\tau _k}(m)$ different colours of the integer *m* when it occurs as a summand in a partition. The case $k = 2$ is of special interest since the number $f(n)$ of semisimple rings with *n* elements when $n = q_1^{{l_1}}q_2^{{l_2}} \ldots$ is given by $f(n) = {P_2}({l_1}){P_2}({l_2}) \ldots$.

- Ian G. Connell,
*A number theory problem concerning finite groups and rings*, Canad. Math. Bull.**7**(1964), 23–34. MR**158927**, DOI https://doi.org/10.4153/CMB-1964-002-1 - G. H. Hardy and E. M. Wright,
*An introduction to the theory of numbers*, Oxford, at the Clarendon Press, 1954. 3rd ed. MR**0067125** - Bruce Richmond,
*A general asymptotic result for partitions*, Canadian J. Math.**27**(1975), no. 5, 1083–1091 (1976). MR**384731**, DOI https://doi.org/10.4153/CJM-1975-113-5 - K. F. Roth and G. Szekeres,
*Some asymptotic formulae in the theory of partitions*, Quart. J. Math. Oxford Ser. (2)**5**(1954), 241–259. MR**67913**, DOI https://doi.org/10.1093/qmath/5.1.241 - John Knopfmacher,
*Arithmetical properties of finite rings and algebras, and analytic number theory*, J. Reine Angew. Math.**252**(1972), 16–43. MR**313214**, DOI https://doi.org/10.1515/crll.1972.252.16 - John Knopfmacher,
*Arithmetical properties of finite rings and algebras, and analytic number theory. IV. Relative asymptotic enumeration and $L$-series*, J. Reine Angew. Math.**270**(1974), 97–114. MR**364134**, DOI https://doi.org/10.1515/crll.1974.270.97

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
10J20

Retrieve articles in all journals with MSC: 10J20

Additional Information

Article copyright:
© Copyright 1977
American Mathematical Society