Properties of standard maps
HTML articles powered by AMS MathViewer
- by Gary M. Huckabay
- Proc. Amer. Math. Soc. 64 (1977), 169-172
- DOI: https://doi.org/10.1090/S0002-9939-1977-0440490-9
- PDF | Request permission
Abstract:
Let X and Y be compact metric spaces. Let $S(X,Y)$ denote the collection of standard maps of X onto Y. We establish that $S(C,Y)$ is a dense subset of $C(C,Y)$, where C is the Cantor set. If f is a standard map and $G(f,Y)\{ A(f,Y)\}$ denotes the subgroup of $H(X)$ which preserves {interchanges} the point-inverses of f, then there is a continuous homomorphism of $A(f,Y)$ into $H(Y)$ with kernel $G(f,Y)$. We also show that $G(f,Y)$ and $A(f,Y)$ are closed subsets of $H(X)$.References
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- Joseph Auslander and Walter H. Gottschalk (eds.), Topological dynamics. An international symposium, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0234445
- Gary M. Huckabay, On the classification of locally compact separable metric spaces, Fund. Math. 97 (1977), no. 3, 215–219. MR 494057, DOI 10.4064/fm-97-3-215-219 —, Standard maps and the classification of topological spaces, Ph.D. thesis, Oklahoma State University.
- Arnold R. Vobach, On subgroups of the homeomorphism group of the Cantor set, Fund. Math. 60 (1967), 47–52. MR 219025, DOI 10.4064/fm-60-1-47-52
- A. R. Vobach, A theorem on homeomorphism groups and products of spaces, Bull. Austral. Math. Soc. 1 (1969), 137–141. MR 246282, DOI 10.1017/S0004972700041344
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 64 (1977), 169-172
- MSC: Primary 54C10
- DOI: https://doi.org/10.1090/S0002-9939-1977-0440490-9
- MathSciNet review: 0440490