LOWER BOUNDS FOR THE ZEROS OF BESSEL FUNCTIONS

ROGER C. MCCANN

Abstract. Let $j_{p,n}$ denote the nth positive zero of J_p, $p > 0$. Then

$$j_{p,n} > (j_{0,n}^2 + p^2)^{1/2}.$$

We begin by considering the eigenvalue problem

(1) $-(xy')' + x^{-1}y = \lambda^2 x^{2p-1}y$, \quad $\lambda, p > 0$,

(2) $y(a) = y(1) = 0$, \quad $0 < a < 1$.

For simplicity of notation we will set $q = p^{-1}$. It is easily verified that the general solution of (1) is

$$y(x) = C_1 J_q(\lambda q x^{1/q}) + C_2 Y_q(\lambda q x^{1/q})$$

and that the eigenvalues are given by

$$J_q(\lambda q) Y_q(\lambda q a^{1/q}) - J_q(\lambda q a^{1/q}) Y_q(\lambda q) = 0.$$

If $z_n(a, r)$ denotes the nth positive zero of $J_r(z) Y_r(z a^{1/q}) - J_r(z a^{1/q}) Y_r(z) = 0$, then the nth eigenvalue, $\lambda^2_n(a)$, of (1), (2) is given by

(3) $\lambda^2_n(a) = \left(z_n(a, q)/q \right)^2$.

Let $j_{r,n}$ denote the nth positive zero of J_r. On p. 38 of [4] it is shown that $z_n(a, r) \to j_{r,n}$ as $a \to 0^+$ whenever r is a positive integer. The restriction on r is extrinsic so that

(4) $\lim_{a \to 0^+} z_n(a, r) = j_{r,n}$, \quad $r > 0$.

Let $R[p, y]$ denote the Rayleigh quotient

$$R[p, y] = \int_a^1 \left(-(xy')' + x^{-1}y \right) y \, dx / \int_a^1 x^{2p-1}y^2 \, dx.$$

It is well known that the eigenvalues \{$\lambda^2_n(p)$\} of (1), (2) can be obtained from the Rayleigh quotient [5]. Let V denote the linear space of all functions in $C^2((a, 1))$ which satisfy the boundary conditions (2). Then

$$\lambda^2_n(p) = \min_{y \in V, y \neq 0} R[p, y].$$

Let y_1, y_2, \ldots, y_n be n functions in V, A denote the subspace of V spanned by y_1, y_2, \ldots, y_n and A^\perp denote the orthogonal complement of A relative to V. Then

Received by the editors January 5, 1976 and, in revised form, September 13, 1976.

where the maximum is taken over all sets of \(n \) functions in \(V \).

Whenever \(p > 0 \) we have that \(x^{2p-1} < x^{-1} \) for all \(x \in (0, 1) \). Then

\[
R[p, y] = \frac{\int_a^1 (xy')' \,dx}{\int_a^1 x^{2p-1} y^2 \,dx} = \frac{\int_a^1 x^{2p-1} y^2 \,dx}{\int_a^1 x^{2p-1} y^2 \,dx} \geq Q[p, y] + 1,
\]

where

\[
Q[p, y] = \int_a^1 - (xy')' \,dx / \int_a^1 x^{2p-1} y^2 \,dx
\]

is the Rayleigh quotient for the eigenvalue problem

\[
-(xy')' = \mu^2 x^{2p-1} y,
\]

\[
y(a) = y(1) = 0,
\]

Equation (6) is equivalent to

\[
x^2 y'' + y' + \mu^2 x^{2p-1} y = 0.
\]

It is easily checked that the general solution of (8) and, hence, of (6) is (recall that \(q = p^{-1} \))

\[
y(x) = C_1 J_0(\mu q x^{1/q}) + C_2 Y_0(\mu q x^{1/q})
\]

and that the eigenvalues are given by

\[
J_0(\mu q) Y_0(\mu q a^{1/q}) - J_0(\mu q a^{1/q}) Y_0(\mu q) = 0.
\]

In particular the \(n \)th eigenvalue, \(\mu_n^2(a) \), of (6), (7) is given by

\[
\mu_n^2(a) = (z_n(a, 0)/q)^2.
\]

From (3), (5), and (9) we obtain

\[
(z_n(a, q)/q)^2 > (z_n(a, 0)/q)^2 + 1.
\]

If we now replace \(q \) by \(p \), let \(a \to 0^+ \) in (10), and using (4) we find that

\[
(j_{p,n}/p)^2 > (j_{0,n}/q)^2 + 1.
\]

Theorem. \(j_{p,n} > ((j_{0,n})^2 + p^2)^{1/2} \) whenever \(p > 0 \).

Corollary. \(j_{p,n} > ((n - \frac{1}{4})^2 + p^2)^{1/2} \) whenever \(p > 0 \).

Proof. It is known (see [9, p. 489]) that the positive zeros of \(J_0 \) lie in the intervals \((m\pi + \frac{3}{4} \pi, m\pi + \frac{5}{4} \pi) \) for \(m = 0, 1, 2, \ldots \). Hence, \(j_{0,n} > (n - 1)^2 + \frac{3}{4} \pi = (n - \frac{1}{4})^2 \). The desired result follows.

In [8] it is shown that

\[
j_{p,n} = p + a_n p^{1/3} + b_n p^{-1/3} + O(p^{-1}) \quad (n = 1, 2, \ldots),
\]

where \(a_n \) and \(b_n \) are independent of \(p \). Hence,

\[
j_{p,n} = p^2 + c_n p^{4/3} + O(p^{2/3}) \quad (n = 1, 2, \ldots),
\]

where \(c_n \) is independent of \(p \). This shows that the second term of the lower
bound for $j_{p,n}$ given in the Theorem is of the wrong order. Other asymptotic expansions for $j_{p,n}$ may be found in [1], [2], and [6].

In [3] it is shown that for $0 \leq p \leq \frac{1}{2}$

$$p\pi/2 + \left(n - \frac{1}{2}\right)\pi \leq j_{p,n}. \tag{11}$$

For $p = 0$ the result of the Theorem is exact, while the expression in (11) has a strict inequality. Hence, our result is stronger than (11) whenever p is sufficiently small. However, when $p = \frac{1}{2}$, the result in (11) is exact. Hence, for $0 \leq p \leq \frac{1}{2}$ neither result implies the other. It should be emphasized that the Theorem is valid for all $p > 0$, while (11) is valid only for $0 \leq p \leq \frac{1}{2}$.

I would like to thank the referee for his helpful suggestions and for bringing [2], [3], and [4] to my attention.

REFERENCES

DEPARTMENT OF MATHEMATICS, CASE WESTERN RESERVE UNIVERSITY, CLEVELAND, OHIO 44106

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use