Lower bounds for the zeros of Bessel functions
HTML articles powered by AMS MathViewer
- by Roger C. McCann
- Proc. Amer. Math. Soc. 64 (1977), 101-103
- DOI: https://doi.org/10.1090/S0002-9939-1977-0442316-6
- PDF | Request permission
Abstract:
Let ${j_{p,n}}$ denote the nth positive zero of ${J_p},p \geqslant 0$. Then \[ {j_{p,n}} \geqslant {( {j_{0,n}^2 + {p^2}} )^{1/2}}.\]References
- Timothy H. Boyer, Concerning the zeros of some functions related to Bessel functions, J. Mathematical Phys. 10 (1969), 1729–1744. MR 257423, DOI 10.1063/1.1665021
- Herbert W. Hethcote, Error bounds for asymptotic approximations of zeros of transcendental functions, SIAM J. Math. Anal. 1 (1970), 147–152. MR 265835, DOI 10.1137/0501015
- Herbert W. Hethcote, Bounds for zeros of some special functions, Proc. Amer. Math. Soc. 25 (1970), 72–74. MR 255909, DOI 10.1090/S0002-9939-1970-0255909-X
- Morris Kline, Some Bessel equations and their application to guide and cavity theory, J. Math. Physics 27 (1948), 37–48. MR 0023961
- S. G. Mikhlin, Variational methods in mathematical physics, A Pergamon Press Book, The Macmillan Company, New York, 1964. Translated by T. Boddington; editorial introduction by L. I. G. Chambers. MR 0172493
- F. W. J. Olver, The asymptotic expansion of Bessel functions of large order, Philos. Trans. Roy. Soc. London Ser. A 247 (1954), 328–368. MR 67250, DOI 10.1098/rsta.1954.0021 —(Editor), Bessel functions. Part III, Roy. Soc. Math. Tables, Vol. 7, Cambridge Univ. Press, Cambridge, 1960.
- Francesco Tricomi, Sulle funzioni di Bellel di ordine e argomento pressochè uguali, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 83 (1949), 3–20 (Italian). MR 34478
- G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR 1349110
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 64 (1977), 101-103
- MSC: Primary 33A40
- DOI: https://doi.org/10.1090/S0002-9939-1977-0442316-6
- MathSciNet review: 0442316