Representations of solvable Lie algebras. IV. An elementary proof of the $(U/P)_{E}$-structure theorem
HTML articles powered by AMS MathViewer
- by J. C. McConnell
- Proc. Amer. Math. Soc. 64 (1977), 8-12
- DOI: https://doi.org/10.1090/S0002-9939-1977-0453831-3
- PDF | Request permission
Abstract:
In this paper we give a shorter and much more elementary proof of a theorem which describes the structure of certain localisations of the enveloping algebra of a completely solvable Lie algebra. Such a localisation is shown to be a twisted group algebra where the group is free abelian of finite rank and the coefficient ring is a polynomial extension of a Weyl algebra.References
- Walter Borho, Peter Gabriel, and Rudolf Rentschler, Primideale in Einhßllenden auflÜsbarer Lie-Algebren (Beschreibung durch Bahnenräume), Lecture Notes in Mathematics, Vol. 357, Springer-Verlag, Berlin-New York, 1973 (German). MR 0376790, DOI 10.1007/BFb0069765
- Jacques Dixmier, Algèbres enveloppantes, Cahiers Scientifiques, Fasc. XXXVII, Gauthier-Villars Ăditeur, Paris-Brussels-Montreal, Que., 1974 (French). MR 0498737
- John C. McConnell and Moss Eisenberg Sweedler, Simplicity of smash products, Proc. London Math. Soc. (3) 23 (1971), 251â266. MR 289607, DOI 10.1112/plms/s3-23.2.251
- J. C. McConnell, Representations of solvable Lie algebras and the Gelfand-Kirillov conjecture, Proc. London Math. Soc. (3) 29 (1974), 453â484. MR 357529, DOI 10.1112/plms/s3-29.3.453
- J. C. McConnell, Representations of solvable Lie algebras. II. Twisted group rings, Ann. Sci. Ăcole Norm. Sup. (4) 8 (1975), no. 2, 157â178. MR 376791, DOI 10.24033/asens.1283 P. Tauvel, Dimension de Krull des algèbres de McConnell, Univ. Pierre et Marie Curie, Paris VI (Preprint).
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 64 (1977), 8-12
- MSC: Primary 17B30
- DOI: https://doi.org/10.1090/S0002-9939-1977-0453831-3
- MathSciNet review: 0453831