Rotaβs theorem for general functional Hilbert spaces
Author:
Joseph A. Ball
Journal:
Proc. Amer. Math. Soc. 64 (1977), 55-61
MSC:
Primary 47A45; Secondary 47A25
DOI:
https://doi.org/10.1090/S0002-9939-1977-0461176-0
MathSciNet review:
0461176
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: By a theorem of G.-C. Rota, every (linear) operator T on a Hilbert space with spectral radius less than one is similar to the adjoint of the unilateral shift S of infinite multiplicity restricted to an invariant subspace. This theorem is shown to be true in a rather general context, where S is multiplication by z on a Hilbert space of functions analytic on an open subset D of the complex plane, and T is an operator with spectrum contained in D. A several-variable version for an N-tuple of commuting operators with a corollary concerning complete spectral sets is also presented.
- M. B. Abrahamse and R. G. Douglas, A class of subnormal operators related to multiply-connected domains, Advances in Math. 19 (1976), no. 1, 106β148. MR 397468, DOI https://doi.org/10.1016/0001-8708%2876%2990023-2
- William Arveson, Subalgebras of $C^{\ast } $-algebras. II, Acta Math. 128 (1972), no. 3-4, 271β308. MR 394232, DOI https://doi.org/10.1007/BF02392166
- C. A. Berger and B. I. Shaw, Intertwining, analytic structure, and the trace norm estimate, Proceedings of a Conference on Operator Theory (Dalhousie Univ., Halifax, N.S., 1973) Springer, Berlin, 1973, pp. 1β6, Lecture Notes in Math., Vol. 345. MR 0361885
- Stefan Bergman, The Kernel Function and Conformal Mapping, Mathematical Surveys, No. 5, American Mathematical Society, New York, N. Y., 1950. MR 0038439
- Joseph Bram, Subnormal operators, Duke Math. J. 22 (1955), 75β94. MR 68129
- James E. Brennan, Invariant subspaces and rational approximation, J. Functional Analysis 7 (1971), 285β310. MR 0423059, DOI https://doi.org/10.1016/0022-1236%2871%2990036-x
- Douglas N. Clark, On commuting contractions, J. Math. Anal. Appl. 32 (1970), 590β596. MR 267407, DOI https://doi.org/10.1016/0022-247X%2870%2990281-7
- R. G. Douglas and Carl Pearcy, Invariant subspaces of non-quasitriangular operators, Proc. Conf. Operator Theory (Dalhousie Univ., Halifax, N.S., 1973), Springer, Berlin, 1973, pp. 13β57. Lecture Notes in Math., Vol. 345. MR 0358391
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Domingo A. Herrero, A Rota universal model for operators with multiply connected spectrum, Rev. Roumaine Math. Pures Appl. 21 (1976), no. 1, 15β23. MR 407628
- Gian-Carlo Rota, On models for linear operators, Comm. Pure Appl. Math. 13 (1960), 469β472. MR 112040, DOI https://doi.org/10.1002/cpa.3160130309
- Donald Sarason, The $H^{p}$ spaces of an annulus, Mem. Amer. Math. Soc. 56 (1965), 78. MR 188824
- Allen L. Shields, Weighted shift operators and analytic function theory, Topics in operator theory, Amer. Math. Soc., Providence, R.I., 1974, pp. 49β128. Math. Surveys, No. 13. MR 0361899
- Dan Voiculescu, Norm-limits of algebraic operators, Rev. Roumaine Math. Pures Appl. 19 (1974), 371β378. MR 343082
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A45, 47A25
Retrieve articles in all journals with MSC: 47A45, 47A25
Additional Information
Keywords:
Reproducing kernel function,
Riesz-Dunford functional calculus,
similarity,
complete spectral set and normal dilation
Article copyright:
© Copyright 1977
American Mathematical Society