Rota’s theorem for general functional Hilbert spaces
HTML articles powered by AMS MathViewer
- by Joseph A. Ball
- Proc. Amer. Math. Soc. 64 (1977), 55-61
- DOI: https://doi.org/10.1090/S0002-9939-1977-0461176-0
- PDF | Request permission
Abstract:
By a theorem of G.-C. Rota, every (linear) operator T on a Hilbert space with spectral radius less than one is similar to the adjoint of the unilateral shift S of infinite multiplicity restricted to an invariant subspace. This theorem is shown to be true in a rather general context, where S is multiplication by z on a Hilbert space of functions analytic on an open subset D of the complex plane, and T is an operator with spectrum contained in D. A several-variable version for an N-tuple of commuting operators with a corollary concerning complete spectral sets is also presented.References
- M. B. Abrahamse and R. G. Douglas, A class of subnormal operators related to multiply-connected domains, Advances in Math. 19 (1976), no. 1, 106–148. MR 397468, DOI 10.1016/0001-8708(76)90023-2
- William Arveson, Subalgebras of $C^{\ast }$-algebras. II, Acta Math. 128 (1972), no. 3-4, 271–308. MR 394232, DOI 10.1007/BF02392166
- C. A. Berger and B. I. Shaw, Intertwining, analytic structure, and the trace norm estimate, Proceedings of a Conference on Operator Theory (Dalhousie Univ., Halifax, N.S., 1973) Lecture Notes in Math., Vol. 345, Springer, Berlin, 1973, pp. 1–6. MR 0361885
- Stefan Bergman, The Kernel Function and Conformal Mapping, Mathematical Surveys, No. 5, American Mathematical Society, New York, N. Y., 1950. MR 0038439, DOI 10.1090/surv/005
- Joseph Bram, Subnormal operators, Duke Math. J. 22 (1955), 75–94. MR 68129
- James E. Brennan, Invariant subspaces and rational approximation, J. Functional Analysis 7 (1971), 285–310. MR 0423059, DOI 10.1016/0022-1236(71)90036-x
- Douglas N. Clark, On commuting contractions, J. Math. Anal. Appl. 32 (1970), 590–596. MR 267407, DOI 10.1016/0022-247X(70)90281-7
- R. G. Douglas and Carl Pearcy, Invariant subspaces of non-quasitriangular operators, Proceedings of a Conference on Operator Theory (Dalhousie Univ., Halifax, N.S., 1973) Lecture Notes in Math., Vol. 345, Springer, Berlin, 1973, pp. 13–57. MR 0358391
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Domingo A. Herrero, A Rota universal model for operators with multiply connected spectrum, Rev. Roumaine Math. Pures Appl. 21 (1976), no. 1, 15–23. MR 407628
- Gian-Carlo Rota, On models for linear operators, Comm. Pure Appl. Math. 13 (1960), 469–472. MR 112040, DOI 10.1002/cpa.3160130309
- Donald Sarason, The $H^{p}$ spaces of an annulus, Mem. Amer. Math. Soc. 56 (1965), 78. MR 188824
- Allen L. Shields, Weighted shift operators and analytic function theory, Topics in operator theory, Math. Surveys, No. 13, Amer. Math. Soc., Providence, R.I., 1974, pp. 49–128. MR 0361899
- Dan Voiculescu, Norm-limits of algebraic operators, Rev. Roumaine Math. Pures Appl. 19 (1974), 371–378. MR 343082
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 64 (1977), 55-61
- MSC: Primary 47A45; Secondary 47A25
- DOI: https://doi.org/10.1090/S0002-9939-1977-0461176-0
- MathSciNet review: 0461176