SET OF UNIQUENESS ON NONCOMMUTATIVE LOCALLY COMPACT GROUPS

MAREK BOZEJKO

Abstract. Using the terminology of P. Eymard we adapt the notion of set of uniqueness to noncommutative case and we show that every compact and residual set in a locally compact nondiscrete group is a set of uniqueness.

In this note we shall prove that every compact and residual (i.e. including no nonempty perfect set) set in locally compact nondiscrete group G is a set of uniqueness. In the particular case, every countable compact set is a set of uniqueness. For the case when the group G is a torus, this is a classical result of W. H. Young (see [1], [3], [8]). For commutative groups that fact was proved by L. H. Loomis [4].

We refer to P. Eymard [2] for the basic definitions, properties and theorems of $A(G)$, $B(G)$, $VN(G)$ and $C^*_p(G)$.

Now we recall some facts. $C^*_p(G)$ and $VN(G)$ are, respectively, the C^*-algebra and the von Neumann algebra generated by the operators $\rho(f)$ on $L^2(G)$, where ρ is the left regular representation of the group G and f is an arbitrary function on G with the compact support.

As in [2], we denote $C^*(G)$, the enveloping C^*-algebra of $L^1(G)$, i.e. the completion of the algebra $L^1(G)$ with respect to the norm

$$\|f\|_{C^*(G)} = \sup\{\|\pi(f)\| : \pi \in \Sigma\},$$

where Σ denotes the space of all \ast-representations of $L^1(G)$ on a Hilbert space.

The Fourier-Stieltjes algebra $B(G)$ consists of all finite complex linear combinations of continuous positive definite functions on G. As shown in [2], $B(G)$, as the dual of $C^*(G)$, is a commutative Banach algebra with unit (the multiplication is defined pointwise). The algebra $A(G)$ is defined as the norm closure in $B(G)$ of the functions from $B(G)$ with compact supports. We note also that $VN(G)$ is the dual of $A(G)$.

We recall also from [2] that if $T \in VN(G)$ and $u \in B(G)$, we can define the multiplication $u \cdot T \in VN(G)$ in the following way: for every function v from $A(G)$, $u \cdot T$ is a functional on $A(G)$ such that $\langle v, u \cdot T \rangle = \langle uv, T \rangle$.

Received by the editors January 14, 1976.

Key words and phrases. Set of uniqueness, $C^*_p(G)$-algebra.

© American Mathematical Society 1977

93
As in [2], the element a from G belongs to the support of the operator $T \in \text{VN}(G)$ ($a \in \text{supp}(T)$), if the following equivalent statements hold:

(i) For every neighborhood V of a, there exists a function $u \in A(G)$ with support in V such that $\langle u, T \rangle \neq 0$.

(ii) If $u \in A(G)$ and $u \cdot T = 0$, then $u(a) = 0$.

Now we can introduce in general case the following

Definition 1. Let E be a compact subset of G; a set E is called a set of uniqueness if $T \in \mathcal{C}_\rho^*(G)$ and $\text{supp}(T) \subseteq E$ imply $T = 0$.

We note that if the group G is commutative and \hat{G} is the dual group, then $\mathcal{C}_\rho^*(G)$ and $\text{VN}(G)$, respectively, coincide with the spaces $C_0(\hat{G})$ and $L^\infty(\hat{G})$, and the support of $T \in \text{VN}(G)$ coincides with the spectrum of its inverse Fourier transform which is an element of $L^\infty(\hat{G})$.

Thus, for the commutative groups, Definition 1 reduces to the usual notion of a set of uniqueness (see e.g. Y. Meyer [5]).

Proposition 1. If the group G is nondiscrete, then $\mathcal{C}_\rho^*(G) \cap \mathcal{C}_\rho^*(G_d) = \{0\}$, where G_d is the group G with discrete topology.

Proof. We recall that every $S \in \mathcal{C}_\rho^*(G_d)$ is of the form $S = \rho(F)$, $F = S(\delta_e)$, $\|S\|_\rho > \|F\|_2 = \|S\|_2$, and $S = 0$ if and only if $\|S\|_2 = 0$. Now we show that

$$\text{dist}(S, \mathcal{C}_\rho^*(G)) > \|S\|_2 \quad \text{for} \quad S \in \mathcal{C}_\rho^*(G_d).$$

Using the density argument it suffices to prove that

$$\|T - \rho(f)\|_\rho > \|T\|_2$$

for every continuous function f on G with compact support T of the form $T = \sum_{n=1}^N a_n \rho(x_n)$. Let $\{V_n\}$ be a family of symmetric neighborhoods of identity such that the Haar measure of V_n tends to zero, and put $h_a = |V_n|^{-1/2} x_n$, where x_n is the characteristic function of the set V_n. Since the net $u_a = |V_n|^{-1/2} h_a$ is an approximate unit in $L^2(G)$, we obtain

$$\lim_{|V_n| \to 0} \|f \ast h_a\|_2 = 0.$$

Note also that

$$\lim_{|V_n| \to 0} \|T(h_a)\|_2 = \|T\|_2,$$

and that fact gives (2).

Corollary 1. The algebra $\mathcal{C}_\rho^*(G)$ has a unit if and only if the group G is discrete.

Now we introduce the following auxiliary definition (see also [4]).

Definition 2. Let $T \in \text{VN}(G)$ and $x \in G$. We say that T belongs locally to $\mathcal{C}_\rho^*(G)$ at the point x ($T \in \mathcal{C}_\rho^*(x)$) if there exists a function $u \in A(G)$ such that $U(x) \neq 0$ and $u \cdot T \in \mathcal{C}_\rho^*(x)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Remark. Since every function from $A(G)$ is continuous, so for every T from $VN(G)$ the set $A_T = \{ x \in G : T \in C_p^*(x) \}$ is open.

Lemma 1. Let $T \in VN(G)$ and the support of T be compact. Then:
(a) if u_1 and u_2 from $B(G)$ are identical on a neighborhood of the support of T, then $u_1T = u_2T$.
(b) $T \in C_p^*(G_d)$ if and only if, for every $x \in G$, we have $T \in C_p^*(x)$.

The proof is the same as in Abelian case (see [2], [4]).

Lemma 2. $C_p^*(G)$ and $C_p^*(G_d)$ are $B(G)$-modules.

The proof follows from the following two facts (see [2]):
(1) If $T = \rho(\mu)$, where μ is a Borel regular measure on G and $v \in B(G)$, then $v \cdot \rho(\mu) = \rho(v\mu)$.
(2) If $T \in VN(G)$ and $u \in B(G)$, then $\| u \cdot T \|_p < \| u \|_B \cdot \| T \|_p$.

Lemma 3. If the support of $T \in VN(G)$ is compact, then $T \in C_p^*(x)$ for every x which is not in the support of T.

Proof. From the regularity of the algebra $A(G)$ there exists a function $u \in A(G)$ such that $u = 0$ on a neighborhood of the support of T and $u(x) \neq 0$. So by the Lemma 1(a), $u \cdot T = 0$; but this means that $T \in C_p^*(x)$.

We now can prove the following

Proposition 2. Let $T \in VN(G)$ and let T have a compact support. Then if $T \in C_p^*(x)$ for every $x \neq e$, then $u \cdot T \in C_p^*(G_d)$ for every $u \in B(G)$ such that $u(e) = 0$.

Proof. Since the support of T is compact, there exists a function $v \in A(G)$ such that $v = 1$ on the neighborhood of the support of T. Hence by Lemma 1(a), $v \cdot T = T$. But the Fourier algebra $A(G)$ is an ideal in $B(G)$ so uv is in $A(G)$ and $uv(e) = 0$. Now we can approximate uv in $A(G)$ norm by a function $g \in A(G)$ which vanishes in a neighborhood of the identity. (See [2, Corollary (4.11)]). Because supp$(g \cdot T) \subset$ supp$(g) \cap$ supp(T), so the identity is not in the support of $g \cdot T$; hence, by Lemma 3, $g \cdot T \in C_p^*(e)$. On the other hand, it is obvious that $g \cdot T \in C_p^*(x)$ for every $x \neq e$, so by Lemma 1(b), $g \cdot T \in C_p^*(G_d)$. Since $u \cdot T = (uv) \cdot T$ and $C_p^*(G_d)$ is complete in the operator norm, Proposition 2 follows.

Corollary 2. Let G be a locally compact nondiscrete group. If

$T \in C_p^*(G) \cap C_p^*(x)$ for every $x \neq e$,

and T has a compact support, then $T = 0$.

Proof. From Proposition 2 we have that $u \cdot T \in C_p^*(G_d)$ for every $u \in B(G)$ such that $u(e) = 0$. But also from Lemma 2, $u \cdot T \in C_p^*(G)$, so by Proposition 1 we have $u \cdot T = 0$. From condition (ii) of the definition of the
support of the operator T, we obtain $u(a) = 0$ for every $u \in A(G)$ such that $u(e) = 0$ and every point $a \in \text{supp}(T)$. But if $T \neq 0$, then we can consider two cases: either $\text{supp}(T) = \{e\}$ or $\text{supp}(T) \supset \{e, a\}$ for some $a \neq e$. In the first case $T = \lambda I$ (see [2, Theorem 4.9]). But $T \in C^*_p(G)$, so by Proposition 1 we get a contradiction; the second case is also impossible because we can take a function $u \in A(G)$ such that $u(a) \neq 0$ and $u(e) = 0$.

Now we are in position to prove

Theorem. If E is compact and residual in a nondiscrete group G, then E is a set of uniqueness.

Proof. Let T be in $C^*_p(G)$ with support in E. We know that the set A_T is open and A_T^c, the complement of A_T in G, is contained in the support of T. We shall prove that A_T^c is empty.

Let A_T^c be nonempty and let x_0 be an isolated point of A_T^c; we also can assume that $x_0 = e$. From the regularity of $A(G)$, there exists a function $u \in A(G)$ such that $u(e) \neq 0$ and $u(x) = 0$ for x from $A_T^c \setminus \{e\}$. Hence by Lemma 3, $u \cdot T \in C^*_p(x)$ for every $x \neq e$ and also $u \cdot T \in C^*_p(G)$. So by the Corollary 2 $u \cdot T = 0$, i.e. $e \not\in A_T^c$—a contradiction. Hence $A_T^c = \emptyset$ and, by Lemma 1(b), $T \in C^*_p(G_a)$. Finally, using Proposition 1, we obtain $T = 0$.

Corollary 3. Every countable compact set in nondiscrete group is a set of uniqueness.

Remark. Using the same argument as in Abelian case one can show that a finite union of sets of uniqueness is also a set of uniqueness.

References

Institute of Mathematics, The Polish Academy of Sciences, Warsaw, Poland

Department of Mathematics, University of Wroclaw, Wroclaw, Poland