Inseparable finite solvable groups. II
HTML articles powered by AMS MathViewer
- by Homer Bechtell
- Proc. Amer. Math. Soc. 64 (1977), 25-29
- DOI: https://doi.org/10.1090/S0002-9939-1977-0498835-X
- PDF | Request permission
Abstract:
A finite group is called inseparable if the only normal subgroups over which it splits are the group itself and the trivial subgroup. Let E be the formation of finite solvable groups with elementary abelian Sylow subgroups. This note establishes the fact that, up to isomorphism, there is exactly one nonnilpotent inseparable solvable group in which the E-residual is a metacyclic p-group.References
- Homer Bechtell, Inseparable finite solvable groups, Trans. Amer. Math. Soc. 216 (1976), 47–60. MR 427469, DOI 10.1090/S0002-9947-1976-0427469-1
- Daniel Gorenstein, Finite groups, Harper & Row, Publishers, New York-London, 1968. MR 0231903
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703
Bibliographic Information
- © Copyright 1977 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 64 (1977), 25-29
- MSC: Primary 20D10
- DOI: https://doi.org/10.1090/S0002-9939-1977-0498835-X
- MathSciNet review: 0498835