On the absence of necessary conditions for linear evolution operators
Author:
Jerome A. Goldstein
Journal:
Proc. Amer. Math. Soc. 64 (1977), 77-80
MSC:
Primary 47D05; Secondary 34G05
DOI:
https://doi.org/10.1090/S0002-9939-1977-0500284-2
MathSciNet review:
0500284
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: There exist selfadjoint operators $A(t)(t \geqslant 0)$, whose resolvents depend smoothly on t, such that the initial value (Schrödinger) problem $du(t)/dt = iA(t)u(t),u(0) = f$ has a unique $({C^\infty })$ solution u for each f in a dense set in the underlying Hilbert space, with u depending continuously on f, and yet the intersection over $t \geqslant 0$ of the domain of $A(t)$ is {0}.
-
G. F. Darmois, Evolution equations in a Banach space, Ph.D. Thesis, Univ. of California, Berkeley, 1975.
- J. R. Dorroh, A simplified proof of a theorem of Kato on linear evolution equations, J. Math. Soc. Japan 27 (1975), no. 3, 474–478. MR 380504, DOI https://doi.org/10.2969/jmsj/02730474
- P. A. Fillmore and J. P. Williams, On operator ranges, Advances in Math. 7 (1971), 254–281. MR 293441, DOI https://doi.org/10.1016/S0001-8708%2871%2980006-3 J. A. Goldstein, Review of Kōmura’s paper, [8]. MR 44 #4567.
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R. I., 1957. rev. ed. MR 0089373
- Tosio Kato, Linear evolution equations of “hyperbolic” type, J. Fac. Sci. Univ. Tokyo Sect. I 17 (1970), 241–258. MR 279626
- Tosio Kato, Linear evolution equations of “hyperbolic” type. II, J. Math. Soc. Japan 25 (1973), 648–666. MR 326483, DOI https://doi.org/10.2969/jmsj/02540648
- Yukio K\B{o}mura, On linear evolution operators in reflexive Banach spaces, J. Fac. Sci. Univ. Tokyo Sect. I A Math. 17 (1970), 529–542. MR 0287361
- David Lowell Lovelady, On the generation of linear evolution operators, Duke Math. J. 42 (1975), 57–69. MR 397477
- R. S. Phillips, A note on the abstract Cauchy problem, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 244–248. MR 61759, DOI https://doi.org/10.1073/pnas.40.4.244 K. Yosida, Functional analysis, Springer, Berlin, 1965.
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47D05, 34G05
Retrieve articles in all journals with MSC: 47D05, 34G05
Additional Information
Article copyright:
© Copyright 1977
American Mathematical Society